# 矩阵的线性运算(加法 + 数乘)
# 矩阵的加法
定义 1 1 1 (矩阵的加法) :F m × n \mathbb F^{m \times n} F m × n 中矩阵 A = ( a i , j ) m × n A = (a_{i, j})_{m \times n} A = ( a i , j ) m × n 和 B = ( b i , j ) m × n B = (b_{i, j})_{m \times n} B = ( b i , j ) m × n 相加,得到的和是 A + B A + B A + B 矩阵,它的第 ( i , j ) (i, j) ( i , j ) 元等于 A , B A, B A , B 的第 ( i , j ) (i, j) ( i , j ) 元之和 a i , j + b i , j a_{i, j} + b_{i, j} a i , j + b i , j ,即:
( a i , j ) m × n + ( b i , j ) m × n = ( a i , j + b i , j ) m × n (a_{i, j})_{m \times n} + (b_{i, j})_{m \times n} = (a_{i, j} + b_{i, j})_{m \times n}
( a i , j ) m × n + ( b i , j ) m × n = ( a i , j + b i , j ) m × n
交换律:A + B = B + A A + B = B + A A + B = B + A 。
结合律:( A + B ) + C = A + ( B + C ) (A + B) + C = A + (B + C) ( A + B ) + C = A + ( B + C ) 。
零矩阵的性质:m × n m \times n m × n 矩阵的所有元素都为 0 0 0 ,记作 O O O ,且对任意 A ∈ F m × n A \in \mathbb F^{m \times n} A ∈ F m × n ,都有 A + O = O + A = A A + O = O + A = A A + O = O + A = A 。
负元:− A = ( − a i , j ) m × n , A + ( − A ) = ( − A ) + A = O -A = (-a_{i, j})_{m \times n}, A + (-A) = (-A) + A = O − A = ( − a i , j ) m × n , A + ( − A ) = ( − A ) + A = O 。
由加法可以定义减法:
A − B = A + ( − B ) , ( a i , j ) m × n − ( b i , j ) m × n = ( a i , j − b i , j ) m × n A - B = A + (-B), (a_{i, j})_{m \times n} - (b_{i, j})_{m \times n} = (a_{i, j} - b_{i, j})_{m \times n}
A − B = A + ( − B ) , ( a i , j ) m × n − ( b i , j ) m × n = ( a i , j − b i , j ) m × n
具有相同的行与列的矩阵(型号),才能相加减。
# 矩阵的数乘
定义 2 2 2 (矩阵的数乘) :对任意 A ∈ F m × n , λ ∈ F A \in \mathbb F^{m \times n}, \lambda \in \mathbb F A ∈ F m × n , λ ∈ F ,相乘得:
λ A = λ ( a i , j ) m × n = ( λ a i , j ) m × n \lambda A = \lambda (a_{i, j})_{m \times n} = (\lambda a_{i, j})_{m \times n}
λ A = λ ( a i , j ) m × n = ( λ a i , j ) m × n
具有如下性质:
对数的加法的分配律:
( λ + μ ) A = λ A + μ A , ∀ A ∈ F m × n , λ , μ ∈ F (\lambda + \mu) A = \lambda A + \mu A, \forall \, A \in \mathbb F^{m \times n}, \lambda, \mu \in \mathbb F
( λ + μ ) A = λ A + μ A , ∀ A ∈ F m × n , λ , μ ∈ F
对矩阵加法的分配律:
λ ( A + B ) = λ A + λ B , ∀ A , B ∈ F m × n , λ ∈ F \lambda (A + B) = \lambda A + \lambda B, \forall \, A, B \in \mathbb F^{m \times n}, \lambda \in \mathbb F
λ ( A + B ) = λ A + λ B , ∀ A , B ∈ F m × n , λ ∈ F
1 A = A , ∀ A ∈ F m × n 1A = A, \forall \, A \in \mathbb F^{m \times n} 1 A = A , ∀ A ∈ F m × n 。
λ ( μ A ) = ( λ μ ) A , ∀ A ∈ F m × n , λ , μ ∈ F \lambda (\mu A) = (\lambda \mu) A, \forall \, A \in \mathbb F^{m \times n}, \lambda, \mu \in \mathbb F λ ( μ A ) = ( λ μ ) A , ∀ A ∈ F m × n , λ , μ ∈ F 。
F m × n \mathbb F^{m \times n} F m × n 在 加法和数乘 运算下满足线性空间的 8 8 8 条运算律,它为 线性空间 。
# 矩阵的乘法
定义 3 3 3 (矩阵的乘法) :对任意正整数 m , n , p m, n, p m , n , p ,任意的数域 F \mathbb F F ,任意的矩阵 A = ( a i , j ) m × n ∈ F m × n , B = ( b i , j ) n × p ∈ F n × p A = (a_{i, j})_{m \times n} \in \mathbb F^{m \times n}, B = (b_{i, j})_{n \times p} \in \mathbb F^{n \times p} A = ( a i , j ) m × n ∈ F m × n , B = ( b i , j ) n × p ∈ F n × p 可以相乘得到的乘积 A B = ( c i , j ) m × p ∈ F m × p AB = (c_{i, j})_{m \times p} \in \mathbb F^{m \times p} A B = ( c i , j ) m × p ∈ F m × p 。它的第 ( i , j ) (i, j) ( i , j ) 个元:
c i , j = ∑ k = 1 n a i , k b k , j = a i , 1 b 1 , j + a i , 2 b 2 , j + ⋯ + a i , n b n , j c_{i, j} = \sum_{k = 1}^{n} a_{i, k} b_{k, j} = a_{i, 1} b_{1, j} + a_{i, 2} b_{2, j} + \cdots + a_{i, n} b_{n, j}
c i , j = k = 1 ∑ n a i , k b k , j = a i , 1 b 1 , j + a i , 2 b 2 , j + ⋯ + a i , n b n , j
注意 :
A , B A, B A , B 可以相乘的条件为:A A A 的 列数 与 B B B 的 行数 相等。
A A A 的第 i i i 行与 B B B 的第 j j j 列相乘得到的数为 A B AB A B 的第 ( i , j ) (i, j) ( i , j ) 个元素。
矩阵乘法的交换律 不成立 。
存在 A ≠ O , B ≠ 0 A \not = O, B \not = 0 A = O , B = 0 ,但是 A B = O AB = O A B = O 的情况。
在矩阵乘法下,消去律 不成立 。
# 矩阵的分块运算
# 矩阵分块的方法
A = ( a 1 , 1 a 1 , 2 ⋯ a 1 , n a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ a m , 1 a m , 2 ⋯ a m , n ) = ( α 1 α 2 ⋮ α m ) B = ( b 1 , 1 b 1 , 2 ⋯ b 1 , n b 2 , 1 b 2 , 2 ⋯ b 2 , n ⋮ ⋮ ⋱ ⋮ b n , 1 b n , 2 ⋯ n n , p ) = ( β 1 β 2 ⋮ β p ) A B = ( α 1 α 2 ⋮ α m ) ( β 1 β 2 ⋯ β p ) = ( α 1 β 1 ⋯ α 1 β p ⋮ ⋱ ⋮ α m β 1 ⋯ α m β p ) A = \begin {pmatrix}
a_{1, 1} & a_{1, 2} & \cdots & a_{1, n} \\
a_{2, 1} & a_{2, 2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end {pmatrix} = \begin {pmatrix}
\alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m
\end {pmatrix} \\
B = \begin {pmatrix}
b_{1, 1} & b_{1, 2} & \cdots & b_{1, n} \\
b_{2, 1} & b_{2, 2} & \cdots & b_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n, 1} & b_{n, 2} & \cdots & n_{n, p}
\end {pmatrix} = \begin {pmatrix}
\beta_1 \\ \beta_2 \\ \vdots \\ \beta_p
\end {pmatrix} \\
AB = \begin {pmatrix}
\alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m
\end {pmatrix} \begin {pmatrix}
\beta_1 & \beta_2 & \cdots & \beta_p
\end {pmatrix} = \begin {pmatrix}
\alpha_1 \beta_1 & \cdots & \alpha_1 \beta_p \\
\vdots & \ddots & \vdots \\
\alpha_m \beta_1 & \cdots & \alpha_m \beta_p
\end {pmatrix}
A = a 1 , 1 a 2 , 1 ⋮ a m , 1 a 1 , 2 a 2 , 2 ⋮ a m , 2 ⋯ ⋯ ⋱ ⋯ a 1 , n a 2 , n ⋮ a m , n = α 1 α 2 ⋮ α m B = b 1 , 1 b 2 , 1 ⋮ b n , 1 b 1 , 2 b 2 , 2 ⋮ b n , 2 ⋯ ⋯ ⋱ ⋯ b 1 , n b 2 , n ⋮ n n , p = β 1 β 2 ⋮ β p A B = α 1 α 2 ⋮ α m ( β 1 β 2 ⋯ β p ) = α 1 β 1 ⋮ α m β 1 ⋯ ⋱ ⋯ α 1 β p ⋮ α m β p
特别地,A A A 与 β j \beta_j β j 的乘积就是 A B AB A B 的第 j j j 列,即
A β j = ( α 1 α 2 ⋮ α m ) β j = ( α 1 β j α 2 β j ⋮ α m β j ) , A B = A ( β 1 β 2 ⋯ β p ) = ( A β 1 A β 2 ⋯ A β p ) A \beta_j = \begin {pmatrix}
\alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m
\end {pmatrix} \beta_j = \begin {pmatrix}
\alpha_1 \beta_j \\ \alpha_2 \beta_j \\ \vdots \\ \alpha_m \beta_j
\end {pmatrix}, AB = A \begin {pmatrix}
\beta_1 & \beta_2 & \cdots & \beta_p
\end {pmatrix} = \begin {pmatrix}
A \beta_1 & A \beta_2 & \cdots & A \beta_p
\end {pmatrix}
A β j = α 1 α 2 ⋮ α m β j = α 1 β j α 2 β j ⋮ α m β j , A B = A ( β 1 β 2 ⋯ β p ) = ( A β 1 A β 2 ⋯ A β p )
我们还有:
A β j = ( a 1 , 1 b 1 , j + ⋯ + a 1 , n b n , j ⋮ a m , 1 b 1 , j + ⋯ + a m , n b n , j ) = ( a 1 , 1 ⋮ a m , 1 ) b 1 , j + ⋯ + ( a 1 , n ⋮ a m , n ) b n , j = ( α 1 ⋯ α n ) ( b 1 , j ⋮ b n , j ) = α 1 b 1 , j + ⋯ + α n b n , j \begin {aligned}
A \beta_j &= \begin {pmatrix}
a_{1, 1} b_{1, j} + \cdots + a_{1, n} b_{n, j} \\
\vdots \\
a_{m, 1} b_{1, j} + \cdots + a_{m, n} b_{n, j}
\end {pmatrix} = \begin {pmatrix}
a_{1, 1} \\ \vdots \\ a_{m, 1}
\end {pmatrix} b_{1, j} + \cdots + \begin {pmatrix}
a_{1, n} \\ \vdots \\ a_{m, n}
\end {pmatrix} b_{n, j} \\
&= \begin {pmatrix}
\alpha_1 & \cdots & \alpha_n
\end {pmatrix} \begin {pmatrix}
b_{1, j} \\ \vdots \\ b_{n, j}
\end {pmatrix} = \alpha_1 b_{1, j} + \cdots + \alpha_n b_{n, j}
\end {aligned}
A β j = a 1 , 1 b 1 , j + ⋯ + a 1 , n b n , j ⋮ a m , 1 b 1 , j + ⋯ + a m , n b n , j = a 1 , 1 ⋮ a m , 1 b 1 , j + ⋯ + a 1 , n ⋮ a m , n b n , j = ( α 1 ⋯ α n ) b 1 , j ⋮ b n , j = α 1 b 1 , j + ⋯ + α n b n , j
一般地,在作矩阵的运算时,可以用一些 横线和竖线 将任意矩阵 A = ( a i , j ) m × n A = (a_{i, j})_{m \times n} A = ( a i , j ) m × n 划分成一些矩形小块:
A = ( A 1 , 1 A 1 , 2 ⋯ A 1 , q A 2 , 1 A 2 , 2 ⋯ A 2 , q ⋮ ⋮ ⋱ ⋮ A p , 1 A p , 2 ⋯ A p , q ) A = \begin {pmatrix}
A_{1, 1} & A_{1, 2} & \cdots & A_{1, q} \\
A_{2, 1} & A_{2, 2} & \cdots & A_{2, q} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p, 1} & A_{p, 2} & \cdots & A_{p, q}
\end {pmatrix}
A = A 1 , 1 A 2 , 1 ⋮ A p , 1 A 1 , 2 A 2 , 2 ⋮ A p , 2 ⋯ ⋯ ⋱ ⋯ A 1 , q A 2 , q ⋮ A p , q
分块的方法是:想象用横线把 A A A 的 m m m 行分成若干组,每组依次包含 m 1 , m 2 , ⋯ , m p m_1, m_2, \cdots, m_p m 1 , m 2 , ⋯ , m p 行,满足 m 1 + m 2 + ⋯ + m p = m m_1 + m_2 + \cdots + m_p = m m 1 + m 2 + ⋯ + m p = m ;用竖线将 A A A 的 n n n 列分成若干组,每组依次包含 n 1 , n 2 , ⋯ , n q n_1, n_2, \cdots, n_q n 1 , n 2 , ⋯ , n q 列,满足 n 1 + n 2 + ⋯ + n q = n n_1 + n_2 + \cdots + n_q = n n 1 + n 2 + ⋯ + n q = n 。则 A A A 被分成 p q pq pq 个小的矩阵 A i , j ∈ F m i × n j , 1 ≤ i ≤ p , 1 ≤ j ≤ q A_{i, j} \in \mathbb F^{m_i \times n_j}, 1 \le i \le p, 1 \le j \le q A i , j ∈ F m i × n j , 1 ≤ i ≤ p , 1 ≤ j ≤ q 。这就称对矩阵 A A A 进行了分块(partitioning),进行了分块的矩阵 A A A 被称为分块矩阵(partitioning matrix)。
在进行矩阵运算时可以暂时将每一块 A i , j A_{i, j} A i , j 作为一个整体,看作一个元,将 A A A 看作由这些元组成的 p × q p \times q p × q 矩阵 A = ( A i , j ) p × q A = (A_{i, j})_{p \times q} A = ( A i , j ) p × q 来进行运算。
# 分块矩阵的加法和数乘
将两个 m × n m \times n m × n 矩阵 A , B A, B A , B 相加,可以将 A , B A, B A , B 进行 同样方式的分块 :
A = ( A 1 , 1 A 1 , 2 ⋯ A 1 , q A 2 , 1 A 2 , 2 ⋯ A 2 , q ⋮ ⋮ ⋱ ⋮ A p , 1 A p , 2 ⋯ A p , q ) B = ( B 1 , 1 B 1 , 2 ⋯ B 1 , q B 2 , 1 B 2 , 2 ⋯ B 2 , q ⋮ ⋮ ⋱ ⋮ B p , 1 B p , 2 ⋯ B p , q ) A = \begin {pmatrix}
A_{1, 1} & A_{1, 2} & \cdots & A_{1, q} \\
A_{2, 1} & A_{2, 2} & \cdots & A_{2, q} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p, 1} & A_{p, 2} & \cdots & A_{p, q}
\end {pmatrix} \quad B = \begin {pmatrix}
B_{1, 1} & B_{1, 2} & \cdots & B_{1, q} \\
B_{2, 1} & B_{2, 2} & \cdots & B_{2, q} \\
\vdots & \vdots & \ddots & \vdots \\
B_{p, 1} & B_{p, 2} & \cdots & B_{p, q}
\end {pmatrix}
A = A 1 , 1 A 2 , 1 ⋮ A p , 1 A 1 , 2 A 2 , 2 ⋮ A p , 2 ⋯ ⋯ ⋱ ⋯ A 1 , q A 2 , q ⋮ A p , q B = B 1 , 1 B 2 , 1 ⋮ B p , 1 B 1 , 2 B 2 , 2 ⋮ B p , 2 ⋯ ⋯ ⋱ ⋯ B 1 , q B 2 , q ⋮ B p , q
使处于同一位置的块 A i , j A_{i, j} A i , j 与 B i , j B_{i, j} B i , j 的行数相等列数也相等。将 A , B A, B A , B 中处于同一位置的块 A i , j , B i , j A_{i, j}, B_{i, j} A i , j , B i , j 相加,得到的:
( A i , j + B i , j ) p × q = ( A 1 , 1 + B 1 , 1 A 1 , 2 + B 1 , 2 ⋯ A 1 , q + B 1 , q A 2 , 1 + B 2 , 1 A 2 , 2 + B 2 , 2 ⋯ A 2 , q + B 2 , q ⋮ ⋮ ⋱ ⋮ A p , 1 + B p , 1 A p , 2 + B p , 2 ⋯ A p , q + B p , q ) (A_{i, j} + B_{i, j})_{p \times q} = \begin {pmatrix}
A_{1, 1} + B_{1, 1} & A_{1, 2} + B_{1, 2} & \cdots & A_{1, q} + B_{1, q} \\
A_{2, 1} + B_{2, 1} & A_{2, 2} + B_{2, 2} & \cdots & A_{2, q} + B_{2, q} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p, 1} + B_{p, 1} & A_{p, 2} + B_{p, 2} & \cdots & A_{p, q} + B_{p, q}
\end {pmatrix}
( A i , j + B i , j ) p × q = A 1 , 1 + B 1 , 1 A 2 , 1 + B 2 , 1 ⋮ A p , 1 + B p , 1 A 1 , 2 + B 1 , 2 A 2 , 2 + B 2 , 2 ⋮ A p , 2 + B p , 2 ⋯ ⋯ ⋱ ⋯ A 1 , q + B 1 , q A 2 , q + B 2 , q ⋮ A p , q + B p , q
就是 A + B A + B A + B 的分块形式。
对任意的 λ ∈ F \lambda \in \mathbb F λ ∈ F ,还容易看出:
λ ( A 1 , 1 A 1 , 2 ⋯ A 1 , q A 2 , 1 A 2 , 2 ⋯ A 2 , q ⋮ ⋮ ⋱ ⋮ A p , 1 A p , 2 ⋯ A p , q ) = ( λ A 1 , 1 λ A 1 , 2 ⋯ λ A 1 , q λ A 2 , 1 λ A 2 , 2 ⋯ λ A 2 , q ⋮ ⋮ ⋱ ⋮ λ A p , 1 λ A p , 2 ⋯ λ A p , q ) \lambda \begin {pmatrix}
A_{1, 1} & A_{1, 2} & \cdots & A_{1, q} \\
A_{2, 1} & A_{2, 2} & \cdots & A_{2, q} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p, 1} & A_{p, 2} & \cdots & A_{p, q}
\end {pmatrix} = \begin {pmatrix}
\lambda A_{1, 1} & \lambda A_{1, 2} & \cdots & \lambda A_{1, q} \\
\lambda A_{2, 1} & \lambda A_{2, 2} & \cdots & \lambda A_{2, q} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda A_{p, 1} & \lambda A_{p, 2} & \cdots & \lambda A_{p, q}
\end {pmatrix}
λ A 1 , 1 A 2 , 1 ⋮ A p , 1 A 1 , 2 A 2 , 2 ⋮ A p , 2 ⋯ ⋯ ⋱ ⋯ A 1 , q A 2 , q ⋮ A p , q = λ A 1 , 1 λ A 2 , 1 ⋮ λ A p , 1 λ A 1 , 2 λ A 2 , 2 ⋮ λ A p , 2 ⋯ ⋯ ⋱ ⋯ λ A 1 , q λ A 2 , q ⋮ λ A p , q
# 分块矩阵的乘法
将矩阵 A ∈ F m × n , B ∈ F n × r A \in \mathbb F^{m \times n}, B \in \mathbb F^{n \times r} A ∈ F m × n , B ∈ F n × r 相乘,可以将 A , B A, B A , B 进行分块:
A = ( A 1 , 1 A 1 , 2 ⋯ A 1 , s ⋮ ⋮ ⋱ ⋮ A p , 1 A p , 2 ⋯ A p , s ) , B = ( B 1 , 1 B 1 , 2 ⋯ B 1 , s ⋮ ⋮ ⋱ ⋮ B p , 1 B p , 2 ⋯ B p , s ) A = \begin {pmatrix}
A_{1, 1} & A_{1, 2} & \cdots & A_{1, s} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p, 1} & A_{p, 2} & \cdots & A_{p, s}
\end {pmatrix}, B = \begin {pmatrix}
B_{1, 1} & B_{1, 2} & \cdots & B_{1, s} \\
\vdots & \vdots & \ddots & \vdots \\
B_{p, 1} & B_{p, 2} & \cdots & B_{p, s}
\end {pmatrix}
A = A 1 , 1 ⋮ A p , 1 A 1 , 2 ⋮ A p , 2 ⋯ ⋱ ⋯ A 1 , s ⋮ A p , s , B = B 1 , 1 ⋮ B p , 1 B 1 , 2 ⋮ B p , 2 ⋯ ⋱ ⋯ B 1 , s ⋮ B p , s
其中 A i , j ∈ F m i × n j , B i , j ∈ F n i × r j , m 1 + m 2 + ⋯ + m p = m , n 1 + n 2 + ⋯ + n s = n , r 1 + r 2 + ⋯ + r q = r A_{i, j} \in \mathbb F^{m_i \times n_j}, B_{i, j} \in \mathbb F^{n_i \times r_j}, m_1 + m_2 + \cdots + m_p = m, n_1 + n_2 + \cdots + n_s = n, r_1 + r_2 + \cdots + r_q = r A i , j ∈ F m i × n j , B i , j ∈ F n i × r j , m 1 + m 2 + ⋯ + m p = m , n 1 + n 2 + ⋯ + n s = n , r 1 + r 2 + ⋯ + r q = r 。
A , B A, B A , B 可以看作以它们的块为元的矩阵来相乘得到分块矩阵:
C = ( C 1 , 1 ⋯ C 1 , q ⋮ ⋱ ⋮ C p , 1 ⋯ C p , q ) C = \begin {pmatrix}
C_{1, 1} & \cdots & C_{1, q} \\
\vdots & \ddots & \vdots \\
C_{p, 1} & \cdots & C_{p, q}
\end {pmatrix}
C = C 1 , 1 ⋮ C p , 1 ⋯ ⋱ ⋯ C 1 , q ⋮ C p , q
其中 C i , j = ∑ k = 1 s A i , k B k , j = A i , 1 B 1 , j + A i , 2 B 2 , j + ⋯ + A i , s B s , j C_{i, j} = \sum\limits_{k = 1}^s A_{i, k} B_{k, j} = A_{i, 1} B_{1, j} + A_{i, 2} B_{2, j} + \cdots + A_{i, s} B_{s, j} C i , j = k = 1 ∑ s A i , k B k , j = A i , 1 B 1 , j + A i , 2 B 2 , j + ⋯ + A i , s B s , j 。
可以验证,这样得到的 C C C 就等于 A B AB A B 。
定义 4 4 4 (对角元与对角阵) :方阵 A = ( a i , j ) n × n A = (a_{i, j})_{n \times n} A = ( a i , j ) n × n 的第 ( i , i ) (i, i) ( i , i ) 元称为方阵的对角元,n n n 个对角元 a 1 , 1 , a 2 , 2 , ⋯ , a n , n a_{1, 1}, a_{2, 2}, \cdots, a_{n, n} a 1 , 1 , a 2 , 2 , ⋯ , a n , n 所在位置组成的一条线称为方阵 A A A 的主对角线。
如果 A A A 的所有非对角元 a i , j ( i ≠ j ) a_{i, j} (i \not = j) a i , j ( i = j ) 都为 0 0 0 ,称 A A A 为对角阵,记作 A = d i a g ( a 1 , 1 , ⋯ , a n , n ) A = \mathrm {diag} (a_{1, 1}, \cdots, a_{n, n}) A = diag ( a 1 , 1 , ⋯ , a n , n ) 。
例 1. 1. 1. 设 Λ = d i a g ( λ 1 , λ 2 , ⋯ , λ n ) , A = ( a i , j ) n × n \Lambda = \mathrm {diag} (\lambda_1, \lambda_2, \cdots, \lambda_n), A = (a_{i, j})_{n \times n} Λ = diag ( λ 1 , λ 2 , ⋯ , λ n ) , A = ( a i , j ) n × n 是 n n n 阶方阵,求 Λ A \Lambda A Λ A 。
解 :A = ( A 1 ⋮ A n ) A = \begin {pmatrix} A_1 \\ \vdots \\ A_n \end {pmatrix} A = A 1 ⋮ A n ,则:
Λ A = ( λ 1 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ λ n ) ( A 1 ⋮ A n ) = ( λ 1 A 1 ⋮ λ n A n ) = ( λ 1 a 1 , 1 λ 1 a 1 , 2 ⋯ λ 1 a 1 , n ⋮ ⋮ ⋱ ⋮ λ n a n , 1 λ n a n , 2 ⋯ λ n a n , n ) \Lambda A = \begin {pmatrix}
\lambda_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n
\end {pmatrix} \begin {pmatrix}
A_1 \\ \vdots \\ A_n
\end {pmatrix} = \begin {pmatrix}
\lambda_1 A_1 \\ \vdots \\ \lambda_n A_n
\end {pmatrix} = \begin {pmatrix}
\lambda_1 a_{1, 1} & \lambda_1 a_{1, 2} & \cdots & \lambda_1 a_{1, n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_n a_{n, 1} & \lambda_n a_{n, 2} & \cdots & \lambda_n a_{n, n}
\end {pmatrix}
Λ A = λ 1 ⋮ 0 ⋯ ⋱ ⋯ 0 ⋮ λ n A 1 ⋮ A n = λ 1 A 1 ⋮ λ n A n = λ 1 a 1 , 1 ⋮ λ n a n , 1 λ 1 a 1 , 2 ⋮ λ n a n , 2 ⋯ ⋱ ⋯ λ 1 a 1 , n ⋮ λ n a n , n
即将 A A A 的各行分别乘以 λ 1 , λ 2 , ⋯ , λ n \lambda_1, \lambda_2, \cdots, \lambda_n λ 1 , λ 2 , ⋯ , λ n 就得到 Λ A \Lambda A Λ A 。
定义 5 5 5 (数量阵与单位阵) :若 a 1 , 1 = ⋯ = a n , n = λ a_{1, 1} = \cdots = a_{n, n} = \lambda a 1 , 1 = ⋯ = a n , n = λ ,称
Λ = d i a g ( λ , ⋯ , λ ) \Lambda = \mathrm {diag} (\lambda, \cdots, \lambda)
Λ = diag ( λ , ⋯ , λ )
为数量阵。
对任意方阵 B B B ,有 Λ B = B Λ = λ B \Lambda B = B \Lambda = \lambda B Λ B = B Λ = λ B ,
I = d i a g ( 1 , ⋯ , 1 ) I = \mathrm {diag} (1, \cdots, 1)
I = diag ( 1 , ⋯ , 1 )
称为单位阵,有时写成 I ( n ) I_{(n)} I ( n ) 。
对任意的 m × n m \times n m × n 矩阵 B B B ,有:
( λ I ( m ) ) B = λ B , B ( λ I ( n ) ) = λ B (\lambda I_{(m)}) B = \lambda B, B(\lambda I_{(n)}) = \lambda B
( λ I ( m ) ) B = λ B , B ( λ I ( n ) ) = λ B
矩阵乘法满足以下与数的乘法类似的性质:
结合律 C ( B A ) = ( C B ) A C(BA) = (CB)A C ( B A ) = ( CB ) A 。
证明 :设 A = ( a i , j ) m × n , B = ( b i , j ) p × m , C = ( c i , j ) q × p A = (a_{i, j})_{m \times n}, B = (b_{i, j})_{p \times m}, C = (c_{i, j})_{q \times p} A = ( a i , j ) m × n , B = ( b i , j ) p × m , C = ( c i , j ) q × p 。
则 B A = D = ( d i , j ) p × n BA = D = (d_{i, j})_{p \times n} B A = D = ( d i , j ) p × n ,其中
d i , j = ∑ k = 1 m b i , k a k , j d_{i, j} = \sum_{k = 1}^m b_{i, k} a_{k, j}
d i , j = k = 1 ∑ m b i , k a k , j
从而 C ( B A ) = C D = G = ( g i , j ) q × n C(BA) = CD = G = (g_{i, j})_{q \times n} C ( B A ) = C D = G = ( g i , j ) q × n ,其中
g i , j = ∑ s = 1 p c i , s d s , j = ∑ s = 1 p c i , s ( ∑ k = 1 m b s , k a k , j ) = ∑ 1 ≤ s ≤ p , 1 ≤ k ≤ m c i , s b s , k a k , j g_{i, j} = \sum_{s = 1}^p c_{i, s} d_{s, j} = \sum_{s = 1}^p c_{i, s} \left( \sum_{k = 1}^m b_{s, k} a_{k, j} \right) = \sum_{1 \le s \le p, 1 \le k \le m} c_{i, s} b_{s, k} a_{k, j}
g i , j = s = 1 ∑ p c i , s d s , j = s = 1 ∑ p c i , s ( k = 1 ∑ m b s , k a k , j ) = 1 ≤ s ≤ p , 1 ≤ k ≤ m ∑ c i , s b s , k a k , j
另外,C B = U = ( u i , j ) q × m CB = U = (u_{i, j})_{q \times m} CB = U = ( u i , j ) q × m ,其中
u i , j = ∑ s = 1 p c i , s b s , j u_{i, j} = \sum_{s = 1}^p c_{i, s} b_{s, j}
u i , j = s = 1 ∑ p c i , s b s , j
从而 ( C B ) A = U A = H = ( h i , j ) q × n (CB)A = UA = H = (h_{i, j})_{q \times n} ( CB ) A = U A = H = ( h i , j ) q × n ,其中
h i , j = ∑ k = 1 m u i , k a k , j = ∑ k = 1 m ( ∑ s = 1 p c i , s b s , k ) a k , j = ∑ 1 ≤ s ≤ p , 1 ≤ k ≤ m c i , s b s , k a k , j h_{i, j} = \sum_{k = 1}^m u_{i, k} a_{k, j} = \sum_{k = 1}^m \left( \sum_{s = 1}^p c_{i, s} b_{s, k} \right) a_{k, j} = \sum_{1 \le s \le p, 1 \le k \le m} c_{i, s} b_{s, k} a_{k, j}
h i , j = k = 1 ∑ m u i , k a k , j = k = 1 ∑ m ( s = 1 ∑ p c i , s b s , k ) a k , j = 1 ≤ s ≤ p , 1 ≤ k ≤ m ∑ c i , s b s , k a k , j
比较以上两式,即得结论。
与数乘的结合律:
λ ( A B ) = ( λ A ) B = A ( λ B ) \lambda (AB) = (\lambda A) B = A (\lambda B)
λ ( A B ) = ( λ A ) B = A ( λ B )
乘法对于加法的分配律:
A ( B + C ) = A B + A C , ( B + C ) A = B A + C A A(B + C) = AB + AC, (B + C) A = BA + CA
A ( B + C ) = A B + A C , ( B + C ) A = B A + C A
例 2. 2. 2. A = ( 1 2 1 2 − 1 − 2 − 1 − 2 1 2 1 2 − 1 − 2 − 1 − 2 ) A = \begin {pmatrix} 1 & 2 & 1 & 2 \\ -1 & -2 & -1 & -2 \\ 1 & 2 & 1 & 2 \\ -1 & -2 & -1 & -2 \end {pmatrix} A = 1 − 1 1 − 1 2 − 2 2 − 2 1 − 1 1 − 1 2 − 2 2 − 2 ,求 A 10 A^{10} A 10 。
解 :记 X = ( 1 , 2 , 1 , 2 ) X = (1, 2, 1, 2) X = ( 1 , 2 , 1 , 2 ) ,则
A = ( X − X X − X ) = ( 1 − 1 1 − 1 ) X = Y X A = \begin {pmatrix}
X \\ -X \\ X \\ -X
\end {pmatrix} = \begin {pmatrix}
1 \\ -1 \\ 1 \\ -1
\end {pmatrix} X = YX
A = X − X X − X = 1 − 1 1 − 1 X = Y X
于是:
A 10 = ( Y X ) ( Y X ) ⋯ ( Y X ) = Y ( X Y ) 9 X A^{10} = (YX)(YX) \cdots (YX) = Y (XY)^9 X
A 10 = ( Y X ) ( Y X ) ⋯ ( Y X ) = Y ( X Y ) 9 X
由:
X Y = ( 1 2 1 2 ) ( 1 − 1 1 − 1 ) = − 2 XY = \begin {pmatrix}
1 & 2 & 1 & 2
\end {pmatrix} \begin {pmatrix}
1 \\ -1 \\ 1 \\ -1
\end {pmatrix} = -2
X Y = ( 1 2 1 2 ) 1 − 1 1 − 1 = − 2
得:
A 10 = Y ( − 2 ) 9 X = − 512 A = ( − 512 − 1024 − 512 − 1024 512 1024 512 1024 − 512 − 1024 − 512 − 1024 512 1024 512 1024 ) A^{10} = Y(-2)^9X = -512 A = \begin {pmatrix}
-512 & -1024 & -512 & -1024 \\
512 & 1024 & 512 & 1024 \\
-512 & -1024 & -512 & -1024 \\
512 & 1024 & 512 & 1024
\end {pmatrix}
A 10 = Y ( − 2 ) 9 X = − 512 A = − 512 512 − 512 512 − 1024 1024 − 1024 1024 − 512 512 − 512 512 − 1024 1024 − 1024 1024
例 3. 3. 3. 设方阵 A A A 的秩为 1 1 1 ,对角元之和为 λ \lambda λ ,求证:A n = λ n − 1 A A^n = \lambda^{n - 1} A A n = λ n − 1 A 。
证明 :r a n k A = 1 \mathrm {rank} \, A = 1 rank A = 1 ,则其行向量组的极大线性无关组由一个非零向量 β = ( b 1 , ⋯ , b n ) \beta = (b_1, \cdots, b_n) β = ( b 1 , ⋯ , b n ) 组成。A A A 的每一行 α i \alpha_i α i 都是 β \beta β 的常数倍:α i = a i β \alpha_i = a_i \beta α i = a i β 。于是:
A = ( a 1 β ⋮ a n β ) = ( a 1 ⋮ a n ) β = α β = ( a 1 b 1 ⋯ a 1 b n ⋮ ⋱ ⋮ a n b 1 ⋯ a n b n ) , A n = ( α β ) ( α β ) ⋯ ( α β ) = α ( β α ) n − 1 β = α λ n − 1 β = λ n − 1 α β = λ n − 1 A A = \begin {pmatrix}
a_1 \beta \\ \vdots \\ a_n \beta
\end {pmatrix} = \begin {pmatrix}
a_1 \\ \vdots \\ a_n
\end {pmatrix} \beta = \alpha \beta = \begin {pmatrix}
a_1 b_1 & \cdots & a_1 b_n \\
\vdots & \ddots & \vdots \\
a_n b_1 & \cdots & a_n b_n
\end {pmatrix}, \\
\begin {aligned}
A^n &= (\alpha \beta) (\alpha \beta) \cdots (\alpha \beta) = \alpha (\beta \alpha)^{n - 1} \beta \\
&= \alpha \lambda^{n - 1} \beta = \lambda^{n - 1} \alpha \beta = \lambda^{n - 1} A
\end {aligned}
A = a 1 β ⋮ a n β = a 1 ⋮ a n β = α β = a 1 b 1 ⋮ a n b 1 ⋯ ⋱ ⋯ a 1 b n ⋮ a n b n , A n = ( α β ) ( α β ) ⋯ ( α β ) = α ( β α ) n − 1 β = α λ n − 1 β = λ n − 1 α β = λ n − 1 A
其中 λ = β α = a 1 b 1 + ⋯ + a n b n \lambda = \beta \alpha = a_1 b_1 + \cdots + a_n b_n λ = β α = a 1 b 1 + ⋯ + a n b n 。
注 :方阵 A A A 对角元之和称为 A A A 的 迹 ,记作 t r A \mathrm {tr} A tr A 。
# 方阵的多项式
由矩阵的乘法可以定义方阵 A A A 的各次幂:
A 1 = A , A 2 = A A , A 3 = ( A 2 ) A , ⋯ , A k + 1 = ( A k ) A , ∀ k ∈ N A^1 = A, A^2 = AA, A^3 = (A^2) A, \cdots, A^{k + 1} = (A^k) A, \forall \, k \in \N
A 1 = A , A 2 = AA , A 3 = ( A 2 ) A , ⋯ , A k + 1 = ( A k ) A , ∀ k ∈ N
由矩阵乘法的结合律,对 ∀ m , n ∈ N \forall \, m, n \in \N ∀ m , n ∈ N ,有:
A m A n = A m + n A^m A^n = A^{m + n}
A m A n = A m + n
设关于 x x x 的多项式
f ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a m x m ∈ F [ x ] f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_m x^m \in \mathbb F[x]
f ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a m x m ∈ F [ x ]
设 A A A 是任一 n n n 阶方阵,则:
f ( A ) = a 0 I + a 1 A + a 2 A 2 + ⋯ + a m A m ∈ F n × n f(A) = a_0 I + a_1 A + a_2 A^2 + \cdots + a_m A^m \in \mathbb F^{n \times n}
f ( A ) = a 0 I + a 1 A + a 2 A 2 + ⋯ + a m A m ∈ F n × n
对 ∀ f ( x ) , g ( x ) ∈ F [ x ] \forall f(x), g(x) \in \mathbb F[x] ∀ f ( x ) , g ( x ) ∈ F [ x ] ,设 s ( x ) = f ( x ) + g ( x ) , p ( x ) = f ( x ) g ( x ) s(x) = f(x) + g(x), p(x) = f(x) g(x) s ( x ) = f ( x ) + g ( x ) , p ( x ) = f ( x ) g ( x ) ,则 s ( A ) = f ( A ) + g ( A ) , p ( A ) = f ( A ) g ( A ) s(A) = f(A) + g(A), p(A) = f(A) g(A) s ( A ) = f ( A ) + g ( A ) , p ( A ) = f ( A ) g ( A ) 。
# 转置与共轭
定义 6 6 6 (转置矩阵) :将 m × n m \times n m × n 矩阵
A = ( a 1 , 1 a 1 , 2 ⋯ a 1 , n a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ a m , 1 a m , 2 ⋯ a m , n ) A = \begin {pmatrix}
a_{1, 1} & a_{1, 2} & \cdots & a_{1, n} \\
a_{2, 1} & a_{2, 2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end {pmatrix}
A = a 1 , 1 a 2 , 1 ⋮ a m , 1 a 1 , 2 a 2 , 2 ⋮ a m , 2 ⋯ ⋯ ⋱ ⋯ a 1 , n a 2 , n ⋮ a m , n
的行列互换得到 n × m n \times m n × m 矩阵,称为 A A A 的转置矩阵,记作 A T A^T A T ,即
A T = ( a 1 , 1 a 2 , 1 ⋯ a m , 1 a 1 , 2 a 2 , 2 ⋯ a m , 2 ⋮ ⋮ ⋱ ⋮ a 1 , n a 2 , n ⋯ a m , n ) A^T = \begin {pmatrix}
a_{1, 1} & a_{2, 1} & \cdots & a_{m, 1} \\
a_{1, 2} & a_{2, 2} & \cdots & a_{m, 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1, n} & a_{2, n} & \cdots & a_{m, n}
\end {pmatrix}
A T = a 1 , 1 a 1 , 2 ⋮ a 1 , n a 2 , 1 a 2 , 2 ⋮ a 2 , n ⋯ ⋯ ⋱ ⋯ a m , 1 a m , 2 ⋮ a m , n
即 A T A^T A T 的第 ( i , j ) (i, j) ( i , j ) 元等于 A A A 的第 ( j , i ) (j, i) ( j , i ) 元。
矩阵的转置满足如下运算律 :
( A T ) T = A (A^T)^T = A ( A T ) T = A ;
对 n n n 阶方阵 A , ∣ A T ∣ = ∣ A ∣ A, |A^T| = |A| A , ∣ A T ∣ = ∣ A ∣ ;
( A + B ) T = A T + B T (A + B)^T = A^T + B^T ( A + B ) T = A T + B T ;
( λ A ) T = λ A T (\lambda A)^T = \lambda A^T ( λ A ) T = λ A T ,λ \lambda λ 是任意数。
( A B ) T = B T A T (AB)^T = B^T A^T ( A B ) T = B T A T 。
设分块矩阵 A ∈ F m × n A \in \mathbb F^{m \times n} A ∈ F m × n ,则 A A A 的转置:
A = ( A 1 , 1 A 1 , 2 ⋯ A 1 , q A 2 , 1 A 2 , 2 ⋯ A 2 , q ⋮ ⋮ ⋱ ⋮ A p , 1 A p , 2 ⋯ A p , q ) A T = ( A 1 , 1 T A 2 , 1 T ⋯ A p , 1 T A 1 , 2 T A 2 , 2 T ⋯ A p , 2 T ⋮ ⋮ ⋱ ⋮ A 1 , q T A 2 , q T ⋯ A p , q T ) A = \begin {pmatrix}
A_{1, 1} & A_{1, 2} & \cdots & A_{1, q} \\
A_{2, 1} & A_{2, 2} & \cdots & A_{2, q} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p, 1} & A_{p, 2} & \cdots & A_{p, q}
\end {pmatrix} \quad A^T = \begin {pmatrix}
A_{1, 1}^T & A_{2, 1}^T & \cdots & A_{p, 1}^T \\
A_{1, 2}^T & A_{2, 2}^T & \cdots & A_{p, 2}^T \\
\vdots & \vdots & \ddots & \vdots \\
A_{1, q}^T & A_{2, q}^T & \cdots & A_{p, q}^T
\end {pmatrix}
A = A 1 , 1 A 2 , 1 ⋮ A p , 1 A 1 , 2 A 2 , 2 ⋮ A p , 2 ⋯ ⋯ ⋱ ⋯ A 1 , q A 2 , q ⋮ A p , q A T = A 1 , 1 T A 1 , 2 T ⋮ A 1 , q T A 2 , 1 T A 2 , 2 T ⋮ A 2 , q T ⋯ ⋯ ⋱ ⋯ A p , 1 T A p , 2 T ⋮ A p , q T
证明 (5) :设 A = ( a i , j ) m × n , B = ( b i , j ) n × p , A B = C = ( c i , j ) m × p A = (a_{i, j})_{m \times n}, B = (b_{i, j})_{n \times p}, AB = C = (c_{i, j})_{m \times p} A = ( a i , j ) m × n , B = ( b i , j ) n × p , A B = C = ( c i , j ) m × p ,则:
c i , j = ∑ k = 1 n a i , k b k , j c_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j}
c i , j = k = 1 ∑ n a i , k b k , j
另外,
A T = ( a i , j ′ ) n × m , B T = ( b i , j ′ ) p × n A^T = (a'_{i, j})_{n \times m}, B^T = (b'_{i, j})_{p \times n}
A T = ( a i , j ′ ) n × m , B T = ( b i , j ′ ) p × n
其中 a i , j ′ = a j , i , b i , j ′ = b j , i a'_{i, j} = a_{j, i}, b'_{i, j} = b_{j, i} a i , j ′ = a j , i , b i , j ′ = b j , i 。
设 B T A T = D = ( d i , j ) p × m B^T A^T = D = (d_{i, j})_{p \times m} B T A T = D = ( d i , j ) p × m ,则:
d i , j = ∑ k = 1 n b j , k ′ a k , i ′ = ∑ k = 1 n b k , j a i , k = c i , j d_{i, j} = \sum_{k = 1}^n b'_{j, k} a'_{k, i} = \sum_{k = 1}^n b_{k, j} a_{i, k} = c_{i, j}
d i , j = k = 1 ∑ n b j , k ′ a k , i ′ = k = 1 ∑ n b k , j a i , k = c i , j
于是 D = C T D = C^T D = C T ,即 ( A B ) T = B T A T (AB)^T = B^T A^T ( A B ) T = B T A T 。
定义 7 7 7 :设 A A A 是方阵,若 A = A T A = A^T A = A T ,则称 A A A 为 对称方阵 。若 A T = − A A^T = -A A T = − A ,就称 A A A 是 反对称方阵 ,也称 斜对称方阵 。
例 4. 4. 4. 设 A A A 是 n n n 阶反对称矩阵,X X X 是 n n n 维列向量。求证:X T A X = 0 X^T AX = 0 X T A X = 0 。
证明 :X T A X X^TAX X T A X 由一个元组成,因此:
X T A X = ( X T A X ) T = X T A T ( X T ) T = X T ( − A ) X = − X T A X X^TAX = (X^TAX)^T = X^T A^T (X^T)^T = X^T (-A) X = -X^TAX
X T A X = ( X T A X ) T = X T A T ( X T ) T = X T ( − A ) X = − X T A X
即有 X T A X = 0 X^T AX = 0 X T A X = 0 。
定义 8 8 8 (共轭矩阵) :设 A = ( a i , j ) m × n ∈ C m × n A = (a_{i, j})_{m \times n} \in \mathbb C^{m \times n} A = ( a i , j ) m × n ∈ C m × n ,其共轭矩阵为 ( a i , j ‾ ) m × n (\overline{a_{i, j}})_{m \times n} ( a i , j ) m × n ,记作 A ‾ \overline {A} A 。
矩阵共轭的性质 :
∀ A , B ∈ C m × n , A + B ‾ = A ‾ + B ‾ \forall \, A, B \in \mathbb C^{m \times n}, \overline {A + B} = \overline A + \overline B ∀ A , B ∈ C m × n , A + B = A + B ;
∀ λ ∈ C , A ∈ C m × n , λ A ‾ = λ ‾ A ‾ \forall \, \lambda \in \mathbb C, A \in \mathbb C^{m \times n}, \overline {\lambda A} = \overline \lambda \overline A ∀ λ ∈ C , A ∈ C m × n , λ A = λ A ;
∀ A ∈ C m × n , B ∈ C n × p , A B ‾ = A ‾ B ‾ \forall \, A \in \mathbb C^{m \times n}, B \in \mathbb C^{n \times p}, \overline {AB} = \overline A \overline B ∀ A ∈ C m × n , B ∈ C n × p , A B = A B ;
∀ A ∈ C m × n , A ‾ T = A T ‾ \forall \, A \in \mathbb C^{m \times n}, \overline A^T = \overline {A^T} ∀ A ∈ C m × n , A T = A T
定义 9 9 9 :设 A ∈ C m × n A \in \mathbb C^{m \times n} A ∈ C m × n ,若 A ‾ T = A \overline A^T = A A T = A ,则称 A A A 为 Hermite 方阵。若 A ‾ T = − A \overline A^T = -A A T = − A ,就称 A A A 是反 Hermite 方阵。
复矩阵 A A A 的共轭转置记为 A ∗ A^* A ∗ ,则如下性质成立:
( A ∗ ) ∗ = A (A^*)^* = A ( A ∗ ) ∗ = A ;
( A + B ) ∗ = A ∗ + B ∗ (A + B)^* = A^* + B^* ( A + B ) ∗ = A ∗ + B ∗ ;
( λ A ) ∗ = λ ‾ A ∗ (\lambda A)^* = \overline \lambda A^* ( λ A ) ∗ = λ A ∗ ;
( A B ) ∗ = B ∗ A ∗ (AB)^* = B^* A^* ( A B ) ∗ = B ∗ A ∗ ;
∣ A ∗ ∣ = ∣ A ∣ ‾ |A^*| = \overline {|A|} ∣ A ∗ ∣ = ∣ A ∣ 。
# 方阵行列式
方阵的行列式具有一些重要的性质和规则:
交换律 :对于方阵 A A A 和 B B B ,有 det ( A B ) = det ( B A ) \det (AB) = \det (BA) det ( A B ) = det ( B A ) ,即方阵乘积的行列式等于乘积顺序颠倒时的行列式;
转置 :对于方阵 A A A ,有 det ( A T ) = det A \det (A^T) = \det A det ( A T ) = det A ,即方阵转置后的行列式等于原始矩阵的行列式;
逆矩阵 :对于可逆方阵 A A A ,有 det ( A − 1 ) = 1 det ( A ) \det (A^{-1}) = \dfrac 1 {\det (A)} det ( A − 1 ) = det ( A ) 1 ,即可逆方阵的逆矩阵的行列式等于原始矩阵的行列式的倒数;
缩放 :对于方阵 A A A 和标量 k k k ,有 det ( k A ) = k n det ( A ) \det (kA) = k^n \det (A) det ( k A ) = k n det ( A ) ,其中 n n n 为方阵 A A A 的维度。即对方阵进行整体缩放,行列式等于原始矩阵的行列式乘以缩放因子的 n n n 次幂;
乘法 :对于方阵 A A A 和 B B B ,有 det ( A B ) = det ( A ) × det ( B ) \det (AB) = \det (A) \times \det (B) det ( A B ) = det ( A ) × det ( B ) ,即方阵乘积的行列式等于各个矩阵行列式的乘积;
零元素 :如果方阵 A A A 中存在一行(或一列)全为零,则 det ( A ) = 0 \det (A) = 0 det ( A ) = 0 ,即方阵的行列式为零,当且仅当矩阵中存在一行(或一列)全为零。
# 习题
设 A = ( 1 0 0 0 λ 0 0 0 0 ) , B = ( a b c b c a c a b ) A = \begin {pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 0 \end {pmatrix}, B = \begin {pmatrix} a & b & c \\ b & c & a \\ c & a & b \end {pmatrix} A = 1 0 0 0 λ 0 0 0 0 , B = a b c b c a c a b ,问 A B AB A B 与 B A BA B A 是否相等?
解:
A B = ( a b c λ b λ c λ a 0 0 0 ) B A = ( a λ b 0 b λ c 0 c λ a 0 ) AB = \begin {pmatrix}
a & b & c \\
\lambda b & \lambda c & \lambda a \\
0 & 0 & 0
\end {pmatrix} \quad BA = \begin {pmatrix}
a & \lambda b & 0 \\
b & \lambda c & 0 \\
c & \lambda a & 0
\end {pmatrix}
A B = a λb 0 b λ c 0 c λa 0 B A = a b c λb λ c λa 0 0 0
因此 A B ≠ B A AB \not = BA A B = B A 。
计算:
(1) ( 0 1 0 0 0 1 1 0 0 ) 10 \begin {pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end {pmatrix}^{10} 0 0 1 1 0 0 0 1 0 10
(2) ( 1 1 − 1 2 2 − 2 4 4 − 4 ) 11 \begin {pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end {pmatrix}^{11} 1 2 4 1 2 4 − 1 − 2 − 4 11
(3) ( 0 1 − 1 − 1 ) 100 \begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix}^{100} ( 0 − 1 1 − 1 ) 100
(4) ( 1 2 3 0 1 4 0 0 1 ) 5 \begin {pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end {pmatrix}^5 1 0 0 2 1 0 3 4 1 5
(5) ( a 1 0 0 0 a 1 0 0 0 a 1 0 0 0 a ) 5 \begin {pmatrix} a & 1 & 0 & 0 \\ 0 & a & 1 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a \end {pmatrix}^5 a 0 0 0 1 a 0 0 0 1 a 0 0 0 1 a 5
(1) 解:
( 0 1 0 0 0 1 1 0 0 ) ( 0 1 0 0 0 1 1 0 0 ) = ( 0 0 1 1 0 0 0 1 0 ) ( 0 0 1 1 0 0 0 1 0 ) ( 0 1 0 0 0 1 1 0 0 ) = ( 1 0 0 0 1 0 0 0 1 ) = I ( 3 ) ( 0 1 0 0 0 1 1 0 0 ) 10 = I ( 3 ) 3 ( 0 1 0 0 0 1 1 0 0 ) = ( 0 1 0 0 0 1 1 0 0 ) \begin {pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end {pmatrix} \begin {pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end {pmatrix} = \begin {pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end {pmatrix} \\
\begin {pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end {pmatrix} \begin {pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end {pmatrix} = \begin {pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end {pmatrix} = I_{(3)} \\
\begin {pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end {pmatrix}^{10} = I_{(3)}^3 \begin {pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end {pmatrix} = \begin {pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end {pmatrix}
0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 = 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 = 1 0 0 0 1 0 0 0 1 = I ( 3 ) 0 0 1 1 0 0 0 1 0 10 = I ( 3 ) 3 0 0 1 1 0 0 0 1 0 = 0 0 1 1 0 0 0 1 0
(2) 解:设 α = ( 1 , 1 , − 1 ) , β = ( 1 2 4 ) \alpha = (1, 1, -1), \beta = \begin {pmatrix} 1 \\ 2 \\ 4 \end {pmatrix} α = ( 1 , 1 , − 1 ) , β = 1 2 4 ,则:
( 1 1 − 1 2 2 − 2 4 4 − 4 ) 11 = [ ( β β − β ) ( α 2 α 4 α ) ] 5 ( 1 1 − 1 2 2 − 2 4 4 − 4 ) = ( − β α ) 5 ( 1 1 − 1 2 2 − 2 4 4 − 4 ) = − β ( α β ) 4 α ( 1 1 − 1 2 2 − 2 4 4 − 4 ) = − β α ( 1 1 − 1 2 2 − 2 4 4 − 4 ) = − ( 1 1 − 1 2 2 − 2 4 4 − 4 ) 2 = ( 1 1 − 1 2 2 − 2 4 4 − 4 ) \begin {aligned}
\begin {pmatrix}
1 & 1 & -1 \\
2 & 2 & -2 \\
4 & 4 & -4
\end {pmatrix}^{11} &= \left[ \begin {pmatrix}
\beta & \beta & - \beta
\end {pmatrix} \begin {pmatrix}
\alpha \\ 2 \alpha \\ 4 \alpha
\end {pmatrix} \right]^5 \begin {pmatrix}
1 & 1 & -1 \\
2 & 2 & -2 \\
4 & 4 & -4
\end {pmatrix} \\
&= (- \beta \alpha)^5 \begin {pmatrix}
1 & 1 & -1 \\
2 & 2 & -2 \\
4 & 4 & -4
\end {pmatrix} \\
&= - \beta (\alpha \beta)^4 \alpha \begin {pmatrix}
1 & 1 & -1 \\
2 & 2 & -2 \\
4 & 4 & -4
\end {pmatrix} \\
&= - \beta \alpha \begin {pmatrix}
1 & 1 & -1 \\
2 & 2 & -2 \\
4 & 4 & -4
\end {pmatrix} \\
&= - \begin {pmatrix}
1 & 1 & -1 \\
2 & 2 & -2 \\
4 & 4 & -4
\end {pmatrix}^2 = \begin {pmatrix}
1 & 1 & -1 \\
2 & 2 & -2 \\
4 & 4 & -4
\end {pmatrix}
\end {aligned}
1 2 4 1 2 4 − 1 − 2 − 4 11 = ( β β − β ) α 2 α 4 α 5 1 2 4 1 2 4 − 1 − 2 − 4 = ( − β α ) 5 1 2 4 1 2 4 − 1 − 2 − 4 = − β ( α β ) 4 α 1 2 4 1 2 4 − 1 − 2 − 4 = − β α 1 2 4 1 2 4 − 1 − 2 − 4 = − 1 2 4 1 2 4 − 1 − 2 − 4 2 = 1 2 4 1 2 4 − 1 − 2 − 4
(3) 解:
( 0 1 − 1 − 1 ) 2 = ( − 1 − 1 1 0 ) ( 0 1 − 1 − 1 ) 3 = ( − 1 − 1 1 0 ) ( 0 1 − 1 − 1 ) = ( 1 0 0 1 ) = I ( 2 ) ( 0 1 − 1 − 1 ) 100 = ( I ( 2 ) ) 33 ( 0 1 − 1 − 1 ) = ( 0 1 − 1 − 1 ) \begin {pmatrix}
0 & 1 \\
-1 & -1
\end {pmatrix}^2 = \begin {pmatrix}
-1 & -1 \\
1 & 0
\end {pmatrix} \\
\begin {pmatrix}
0 & 1 \\
-1 & -1
\end {pmatrix}^3 = \begin {pmatrix}
-1 & -1 \\
1 & 0
\end {pmatrix} \begin {pmatrix}
0 & 1 \\
-1 & -1
\end {pmatrix} = \begin {pmatrix}
1 & 0 \\
0 & 1
\end {pmatrix} = I_{(2)} \\
\begin {pmatrix}
0 & 1 \\
-1 & -1
\end {pmatrix}^{100} = (I_{(2)})^{33} \begin {pmatrix}
0 & 1 \\
-1 & -1
\end {pmatrix} = \begin {pmatrix}
0 & 1 \\
-1 & -1
\end {pmatrix}
( 0 − 1 1 − 1 ) 2 = ( − 1 1 − 1 0 ) ( 0 − 1 1 − 1 ) 3 = ( − 1 1 − 1 0 ) ( 0 − 1 1 − 1 ) = ( 1 0 0 1 ) = I ( 2 ) ( 0 − 1 1 − 1 ) 100 = ( I ( 2 ) ) 33 ( 0 − 1 1 − 1 ) = ( 0 − 1 1 − 1 )
(4) 解:
( 1 2 3 0 1 4 0 0 1 ) 2 = ( 1 4 14 0 1 8 0 0 1 ) ( 1 2 3 0 1 4 0 0 1 ) 3 = ( 1 4 14 0 1 8 0 0 1 ) ( 1 2 3 0 1 4 0 0 1 ) = ( 1 6 33 0 1 12 0 0 1 ) ( 1 2 3 0 1 4 0 0 1 ) 4 = ( 1 6 33 0 1 12 0 0 1 ) ( 1 2 3 0 1 4 0 0 1 ) = ( 1 8 60 0 1 16 0 0 1 ) ( 1 2 3 0 1 4 0 0 1 ) 5 = ( 1 8 60 0 1 16 0 0 1 ) ( 1 2 3 0 1 4 0 0 1 ) = ( 1 10 95 0 1 20 0 0 1 ) \begin {pmatrix}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end {pmatrix}^2 = \begin {pmatrix}
1 & 4 & 14 \\
0 & 1 & 8 \\
0 & 0 & 1
\end {pmatrix} \\
\begin {pmatrix}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end {pmatrix}^3 = \begin {pmatrix}
1 & 4 & 14 \\
0 & 1 & 8 \\
0 & 0 & 1
\end {pmatrix} \begin {pmatrix}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end {pmatrix} = \begin {pmatrix}
1 & 6 & 33 \\
0 & 1 & 12 \\
0 & 0 & 1
\end {pmatrix} \\
\begin {pmatrix}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end {pmatrix}^4 = \begin {pmatrix}
1 & 6 & 33 \\
0 & 1 & 12 \\
0 & 0 & 1
\end {pmatrix} \begin {pmatrix}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end {pmatrix} = \begin {pmatrix}
1 & 8 & 60 \\
0 & 1 & 16 \\
0 & 0 & 1
\end {pmatrix} \\
\begin {pmatrix}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end {pmatrix}^5 = \begin {pmatrix}
1 & 8 & 60 \\
0 & 1 & 16 \\
0 & 0 & 1
\end {pmatrix} \begin {pmatrix}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 1
\end {pmatrix} = \begin {pmatrix}
1 & 10 & 95 \\
0 & 1 & 20 \\
0 & 0 & 1
\end {pmatrix}
1 0 0 2 1 0 3 4 1 2 = 1 0 0 4 1 0 14 8 1 1 0 0 2 1 0 3 4 1 3 = 1 0 0 4 1 0 14 8 1 1 0 0 2 1 0 3 4 1 = 1 0 0 6 1 0 33 12 1 1 0 0 2 1 0 3 4 1 4 = 1 0 0 6 1 0 33 12 1 1 0 0 2 1 0 3 4 1 = 1 0 0 8 1 0 60 16 1 1 0 0 2 1 0 3 4 1 5 = 1 0 0 8 1 0 60 16 1 1 0 0 2 1 0 3 4 1 = 1 0 0 10 1 0 95 20 1
(5) 解:记 A = ( a 1 0 a ) , B = ( 0 0 1 0 ) A = \begin {pmatrix} a & 1 \\ 0 & a \end {pmatrix}, B = \begin {pmatrix} 0 & 0 \\ 1 & 0 \end {pmatrix} A = ( a 0 1 a ) , B = ( 0 1 0 0 ) ,则:
A 2 = ( a 2 2 a 0 a 2 ) A 3 = ( a 2 2 a 0 a 2 ) ( a 1 0 a ) = ( a 3 3 a 2 0 a 3 ) A 4 = ( a 3 3 a 2 0 a 3 ) ( a 1 0 a ) = ( a 4 4 a 3 0 a 4 ) A 5 = ( a 4 4 a 3 0 a 4 ) ( a 1 0 a ) = ( a 5 5 a 4 0 a 5 ) A 4 B = ( a 4 4 a 3 0 a 4 ) ( 0 0 1 0 ) = ( 4 a 3 0 a 4 0 ) A 3 B A = ( a 3 3 a 2 0 a 3 ) ( 0 0 1 0 ) ( a 1 0 a ) = ( 3 a 2 0 a 3 0 ) ( a 1 0 a ) = ( 3 a 3 3 a 2 a 4 a 3 ) A 2 B A 2 = ( a 2 2 a 0 a 2 ) ( 0 0 1 0 ) ( a 2 2 a 0 a 2 ) = ( 2 a 0 a 2 0 ) ( a 2 2 a 0 a 2 ) = ( 2 a 3 4 a 2 a 4 2 a 3 ) A B A 3 = ( a 1 0 a ) ( 0 0 1 0 ) ( a 3 3 a 2 0 a 3 ) = ( 1 0 a 0 ) ( a 3 3 a 2 0 a 3 ) = ( a 3 3 a 2 a 4 3 a 3 ) B A 4 = ( 0 0 1 0 ) ( a 4 4 a 3 0 a 4 ) = ( 0 0 a 4 4 a 3 ) A 4 B + A 3 B A + A 2 B A 2 + A B A 3 + B A 4 = ( 10 a 3 10 a 2 5 a 4 10 a 3 ) ( a 1 0 0 0 a 1 0 0 0 a 1 0 0 0 a ) 5 = ( A B O A ) 5 = ( A 2 A B + B A O A 2 ) 2 ( A B O A ) = ( A 4 A 3 B + A 2 B A + A B A 2 + B A 3 O A 4 ) ( A B O A ) = ( A 5 A 4 B + A 3 B A + A 2 B A 2 + A B A 3 + B A 4 O A 5 ) = ( a 5 5 a 4 10 a 3 10 a 2 0 a 5 5 a 4 10 a 3 0 0 a 5 5 a 4 0 0 0 a 5 ) A^2 = \begin {pmatrix}
a^2 & 2a \\
0 & a^2
\end {pmatrix} \\
A^3 = \begin {pmatrix}
a^2 & 2a \\
0 & a^2
\end {pmatrix} \begin {pmatrix}
a & 1 \\
0 & a
\end {pmatrix} = \begin {pmatrix}
a^3 & 3a^2 \\
0 & a^3
\end {pmatrix} \\
A^4 = \begin {pmatrix}
a^3 & 3a^2 \\
0 & a^3
\end {pmatrix} \begin {pmatrix}
a & 1 \\
0 & a
\end {pmatrix} = \begin {pmatrix}
a^4 & 4a^3 \\
0 & a^4
\end {pmatrix} \\
A^5 = \begin {pmatrix}
a^4 & 4a^3 \\
0 & a^4
\end {pmatrix} \begin {pmatrix}
a & 1 \\
0 & a
\end {pmatrix} = \begin {pmatrix}
a^5 & 5a^4 \\
0 & a^5
\end {pmatrix} \\
A^4B = \begin {pmatrix}
a^4 & 4a^3 \\
0 & a^4
\end {pmatrix} \begin {pmatrix}
0 & 0 \\
1 & 0
\end {pmatrix} = \begin {pmatrix}
4a^3 & 0 \\
a^4 & 0
\end {pmatrix} \\
A^3BA = \begin {pmatrix}
a^3 & 3a^2 \\
0 & a^3
\end {pmatrix} \begin {pmatrix}
0 & 0 \\
1 & 0
\end {pmatrix} \begin {pmatrix}
a & 1 \\
0 & a
\end {pmatrix} = \begin {pmatrix}
3a^2 & 0 \\
a^3 & 0
\end {pmatrix} \begin {pmatrix}
a & 1 \\
0 & a
\end {pmatrix} = \begin {pmatrix}
3a^3 & 3a^2 \\
a^4 & a^3
\end {pmatrix} \\
A^2BA^2 = \begin {pmatrix}
a^2 & 2a \\
0 & a^2
\end {pmatrix} \begin {pmatrix}
0 & 0 \\
1 & 0
\end {pmatrix} \begin {pmatrix}
a^2 & 2a \\
0 & a^2
\end {pmatrix} = \begin {pmatrix}
2a & 0 \\
a^2 & 0
\end {pmatrix} \begin {pmatrix}
a^2 & 2a \\
0 & a^2
\end {pmatrix} = \begin {pmatrix}
2a^3 & 4a^2 \\
a^4 & 2a^3
\end {pmatrix} \\
ABA^3 = \begin {pmatrix}
a & 1 \\
0 & a
\end {pmatrix} \begin {pmatrix}
0 & 0 \\
1 & 0
\end {pmatrix} \begin {pmatrix}
a^3 & 3a^2 \\
0 & a^3
\end {pmatrix} = \begin {pmatrix}
1 & 0 \\
a & 0
\end {pmatrix} \begin {pmatrix}
a^3 & 3a^2 \\
0 & a^3
\end {pmatrix} = \begin {pmatrix}
a^3 & 3a^2 \\
a^4 & 3a^3
\end {pmatrix} \\
BA^4 = \begin {pmatrix}
0 & 0 \\
1 & 0
\end {pmatrix} \begin {pmatrix}
a^4 & 4a^3 \\
0 & a^4
\end {pmatrix} = \begin {pmatrix}
0 & 0 \\
a^4 & 4a^3
\end {pmatrix} \\
A^4B + A^3BA + A^2BA^2 + ABA^3 + BA^4 = \begin {pmatrix}
10a^3 & 10a^2 \\
5a^4 & 10a^3
\end {pmatrix} \\ \begin {aligned}
\begin {pmatrix}
a & 1 & 0 & 0 \\
0 & a & 1 & 0 \\
0 & 0 & a & 1 \\
0 & 0 & 0 & a
\end {pmatrix}^5 &= \begin {pmatrix}
A & B \\
O & A
\end {pmatrix}^5 \\
&= \begin {pmatrix}
A^2 & AB + BA \\
O & A^2
\end {pmatrix}^2 \begin {pmatrix}
A & B \\
O & A
\end {pmatrix} \\
&= \begin {pmatrix}
A^4 & A^3B + A^2BA + ABA^2 + BA^3 \\
O & A^4
\end {pmatrix} \begin {pmatrix}
A & B \\
O & A
\end {pmatrix} \\
&= \begin {pmatrix}
A^5 & A^4B + A^3BA + A^2BA^2 + ABA^3 + BA^4 \\
O & A^5
\end {pmatrix} \\
&= \begin {pmatrix}
a^5 & 5a^4 & 10a^3 & 10a^2 \\
0 & a^5 & 5a^4 & 10a^3 \\
0 & 0 & a^5 & 5a^4 \\
0 & 0 & 0 & a^5
\end {pmatrix}
\end {aligned}
A 2 = ( a 2 0 2 a a 2 ) A 3 = ( a 2 0 2 a a 2 ) ( a 0 1 a ) = ( a 3 0 3 a 2 a 3 ) A 4 = ( a 3 0 3 a 2 a 3 ) ( a 0 1 a ) = ( a 4 0 4 a 3 a 4 ) A 5 = ( a 4 0 4 a 3 a 4 ) ( a 0 1 a ) = ( a 5 0 5 a 4 a 5 ) A 4 B = ( a 4 0 4 a 3 a 4 ) ( 0 1 0 0 ) = ( 4 a 3 a 4 0 0 ) A 3 B A = ( a 3 0 3 a 2 a 3 ) ( 0 1 0 0 ) ( a 0 1 a ) = ( 3 a 2 a 3 0 0 ) ( a 0 1 a ) = ( 3 a 3 a 4 3 a 2 a 3 ) A 2 B A 2 = ( a 2 0 2 a a 2 ) ( 0 1 0 0 ) ( a 2 0 2 a a 2 ) = ( 2 a a 2 0 0 ) ( a 2 0 2 a a 2 ) = ( 2 a 3 a 4 4 a 2 2 a 3 ) A B A 3 = ( a 0 1 a ) ( 0 1 0 0 ) ( a 3 0 3 a 2 a 3 ) = ( 1 a 0 0 ) ( a 3 0 3 a 2 a 3 ) = ( a 3 a 4 3 a 2 3 a 3 ) B A 4 = ( 0 1 0 0 ) ( a 4 0 4 a 3 a 4 ) = ( 0 a 4 0 4 a 3 ) A 4 B + A 3 B A + A 2 B A 2 + A B A 3 + B A 4 = ( 10 a 3 5 a 4 10 a 2 10 a 3 ) a 0 0 0 1 a 0 0 0 1 a 0 0 0 1 a 5 = ( A O B A ) 5 = ( A 2 O A B + B A A 2 ) 2 ( A O B A ) = ( A 4 O A 3 B + A 2 B A + A B A 2 + B A 3 A 4 ) ( A O B A ) = ( A 5 O A 4 B + A 3 B A + A 2 B A 2 + A B A 3 + B A 4 A 5 ) = a 5 0 0 0 5 a 4 a 5 0 0 10 a 3 5 a 4 a 5 0 10 a 2 10 a 3 5 a 4 a 5
举出分别满足下列条件的整数 2 2 2 阶方阵 A A A ,其中 E E E 为单位阵:
(1) A ≠ ± E A \not = \pm E A = ± E ,但 A 2 = E A^2 = E A 2 = E ;
(2) A ≠ E A \not = E A = E ,但 A 3 = E A^3 = E A 3 = E ;
(3) A 2 = − E A^2 = -E A 2 = − E ;
(4) A 2 = − 2 E A^2 = -2E A 2 = − 2 E 。
(1) 解:设 A = ( a b c d ) A = \begin {pmatrix} a & b \\ c & d \end {pmatrix} A = ( a c b d ) ,则:
A 2 = ( a b c d ) ( a b c d ) = ( a 2 + b c a b + b d a c + c d b c + d 2 ) A^2 = \begin {pmatrix}
a & b \\
c & d
\end {pmatrix} \begin {pmatrix}
a & b \\
c & d
\end {pmatrix} = \begin {pmatrix}
a^2 + bc & ab + bd \\
ac + cd & bc + d^2
\end {pmatrix}
A 2 = ( a c b d ) ( a c b d ) = ( a 2 + b c a c + c d ab + b d b c + d 2 )
只需使如下方程组成立:
{ a 2 + b c = 1 a b + b d = 0 a c + c d = 0 b c + d 2 = 1 \begin {cases}
a^2 + bc = 1 \\
ab + bd = 0 \\
ac + cd = 0 \\
bc + d^2 = 1
\end {cases}
⎩ ⎨ ⎧ a 2 + b c = 1 ab + b d = 0 a c + c d = 0 b c + d 2 = 1
取 a = 1 , b = c = 0 , d = − 1 a = 1, b = c = 0, d = -1 a = 1 , b = c = 0 , d = − 1 即可,即 A = ( 1 0 0 − 1 ) A = \begin {pmatrix} 1 & 0 \\ 0 & -1 \end {pmatrix} A = ( 1 0 0 − 1 )
(2) 解:
A 3 = ( a 2 + b c a b + b d a c + c d b c + d 2 ) ( a b c d ) = ( a 3 + 2 a b c + b c d a 2 b + b 2 c + a b d + b d 2 a 2 c + a c d + b c 2 + c d 2 a b c + 2 b c d + d 3 ) A^3 = \begin {pmatrix}
a^2 + bc & ab + bd \\
ac + cd & bc + d^2
\end {pmatrix} \begin {pmatrix}
a & b \\
c & d
\end {pmatrix} = \begin {pmatrix}
a^3 + 2abc + bcd & a^2b + b^2c + abd + bd^2 \\
a^2c + acd + bc^2 + cd^2 & abc + 2bcd + d^3
\end {pmatrix}
A 3 = ( a 2 + b c a c + c d ab + b d b c + d 2 ) ( a c b d ) = ( a 3 + 2 ab c + b c d a 2 c + a c d + b c 2 + c d 2 a 2 b + b 2 c + ab d + b d 2 ab c + 2 b c d + d 3 )
只需使如下方程组成立:
{ a 3 + 2 a b c + b c d = 1 a 2 b + b 2 c + a b d + b d 2 = 0 a 2 c + a c d + b c 2 + c d 2 = 0 a b c + 2 b c d + d 3 = 1 \begin {cases}
a^3 + 2abc + bcd = 1 \\
a^2b + b^2c + abd + bd^2 = 0 \\
a^2c + acd + bc^2 + cd^2 = 0 \\
abc + 2bcd + d^3 = 1
\end {cases}
⎩ ⎨ ⎧ a 3 + 2 ab c + b c d = 1 a 2 b + b 2 c + ab d + b d 2 = 0 a 2 c + a c d + b c 2 + c d 2 = 0 ab c + 2 b c d + d 3 = 1
取 a = 0 , b = 1 , c = − 1 , d = − 1 a = 0, b = 1, c = -1, d = -1 a = 0 , b = 1 , c = − 1 , d = − 1 即可,即 A = ( 0 1 − 1 − 1 ) A = \begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix} A = ( 0 − 1 1 − 1 )
(3) 解:只需使如下方程组成立:
{ a 2 + b c = − 1 a b + b d = 0 a c + c d = 0 b c + d 2 = − 1 \begin {cases}
a^2 + bc = -1 \\
ab + bd = 0 \\
ac + cd = 0 \\
bc + d^2 = -1
\end {cases}
⎩ ⎨ ⎧ a 2 + b c = − 1 ab + b d = 0 a c + c d = 0 b c + d 2 = − 1
取 a = 1 , b = 1 , c = − 2 , d = − 1 a = 1, b = 1, c = -2, d = -1 a = 1 , b = 1 , c = − 2 , d = − 1 即可,即 A = ( 1 1 − 2 − 1 ) A = \begin {pmatrix} 1 & 1 \\ -2 & -1 \end {pmatrix} A = ( 1 − 2 1 − 1 )
(4) 解:只需使如下方程组成立:
{ a 2 + b c = − 2 a b + b d = 0 a c + c d = 0 b c + d 2 = − 2 \begin {cases}
a^2 + bc = -2 \\
ab + bd = 0 \\
ac + cd = 0 \\
bc + d^2 = -2
\end {cases}
⎩ ⎨ ⎧ a 2 + b c = − 2 ab + b d = 0 a c + c d = 0 b c + d 2 = − 2
取 a = 1 , b = 1 , c = − 3 , d = − 1 a = 1, b = 1, c = -3, d = -1 a = 1 , b = 1 , c = − 3 , d = − 1 即可,即 A = ( 1 1 − 3 − 1 ) A = \begin {pmatrix} 1 & 1 \\ -3 & -1 \end {pmatrix} A = ( 1 − 3 1 − 1 )
设 A A A 是一个对角阵,它的主对角线上的元素 a 1 , 1 , a 2 , 2 , ⋯ , a n , n a_{1, 1}, a_{2, 2}, \cdots, a_{n, n} a 1 , 1 , a 2 , 2 , ⋯ , a n , n 两两不同。证明:凡与 A A A 相乘可交换的矩阵一定是对角阵。
证明:设矩阵 B B B 不是对角阵,与 A A A 相乘可交换,不妨设 b i , j ≠ 0 , i ≠ j b_{i, j} \not = 0, i \not = j b i , j = 0 , i = j ,设 C = A B , D = B A C = AB, D = BA C = A B , D = B A ,则:
c i , j = ∑ k = 1 n a i , k b k , j = a i , i b i , j d i , j = ∑ k = 1 n b i , k a k , j = b i , j a j , j c_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j} = a_{i, i} b_{i, j} \\
d_{i, j} = \sum_{k = 1}^n b_{i, k} a_{k, j} = b_{i, j} a_{j, j}
c i , j = k = 1 ∑ n a i , k b k , j = a i , i b i , j d i , j = k = 1 ∑ n b i , k a k , j = b i , j a j , j
由于 a i , i ≠ a j , j a_{i, i} \not = a_{j, j} a i , i = a j , j ,所以 c i , j ≠ d i , j c_{i, j} \not = d_{i, j} c i , j = d i , j ,A A A 与 B B B 相乘不可交换,凡与 A A A 相乘可交换的矩阵一定是对角阵。
设 n ≥ 2 n \ge 2 n ≥ 2 ,是否存在一个方阵 A ∈ F n × n A \in \mathbb F^{n \times n} A ∈ F n × n ,使得 F n × n \mathbb F^{n \times n} F n × n 中所有的方阵都可以写成:
a 0 E + a 1 A + ⋯ + a m A m a_0 E + a_1 A + \cdots + a_m A^m
a 0 E + a 1 A + ⋯ + a m A m
其中 m m m 为正整数,E E E 为单位阵,a 0 , a 1 , ⋯ , a m ∈ F a_0, a_1, \cdots, a_m \in \mathbb F a 0 , a 1 , ⋯ , a m ∈ F ?请说明理由。
提示 :这种形式的矩阵与 A A A 相乘可以交换。
解:由题,若存在这样的 A A A ,则对任意的 B ∈ F n × n B \in \mathbb F^{n \times n} B ∈ F n × n ,都应有 B B B 与 A A A 相乘可交换,设 C = A B , D = B A C = AB, D = BA C = A B , D = B A ,则:
c i , j = ∑ k = 1 n a i , k b k , j = a i , i b i , j d i , j = ∑ k = 1 n b i , k a k , j = b i , j a j , j c_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j} = a_{i, i} b_{i, j} \\
d_{i, j} = \sum_{k = 1}^n b_{i, k} a_{k, j} = b_{i, j} a_{j, j}
c i , j = k = 1 ∑ n a i , k b k , j = a i , i b i , j d i , j = k = 1 ∑ n b i , k a k , j = b i , j a j , j
则应有 a i , i = a j , j a_{i, i} = a_{j, j} a i , i = a j , j 对任意 1 ≤ i , j ≤ n 1 \le i, j \le n 1 ≤ i , j ≤ n 成立。即 A A A 的对角元全部相等,式子 a 0 E + a 1 A + ⋯ + a m A m a_0 E + a_1 A + \cdots + a_m A^m a 0 E + a 1 A + ⋯ + a m A m 所表示出的矩阵对角元也全部相等,显然无法表示出 F n × n \mathbb F^{n \times n} F n × n 中的所有矩阵。
已知 A , B A, B A , B 都是 n n n 阶实矩阵,A 2 = E , B 2 = E , ∣ A ∣ + ∣ B ∣ = 0 A^2 = E, B^2 = E, |A| + |B| = 0 A 2 = E , B 2 = E , ∣ A ∣ + ∣ B ∣ = 0 ,试证:∣ A + B ∣ = 0 |A + B| = 0 ∣ A + B ∣ = 0 。
证明:显然 ∣ E ∣ = 1 |E| = 1 ∣ E ∣ = 1 ,因此由方阵的行列式性质可知,∣ A ∣ = ∣ B ∣ = ± 1 |A| = |B| = \pm 1 ∣ A ∣ = ∣ B ∣ = ± 1 ;又由于 ∣ A ∣ + ∣ B ∣ = 0 |A| + |B| = 0 ∣ A ∣ + ∣ B ∣ = 0 ,因此 ∣ A ∣ ∣ B ∣ = − 1 = ∣ A B ∣ = ∣ B A ∣ |A||B| = -1 = |AB| = |BA| ∣ A ∣∣ B ∣ = − 1 = ∣ A B ∣ = ∣ B A ∣ 。
则 − ∣ A + B ∣ = ∣ A ∣ ∣ A + B ∣ ∣ B ∣ = ∣ A 2 B + A B 2 ∣ = ∣ E B + A E ∣ = ∣ B + A ∣ -|A + B| = |A||A + B||B| = |A^2B + AB^2| = |EB + AE| = |B + A| − ∣ A + B ∣ = ∣ A ∣∣ A + B ∣∣ B ∣ = ∣ A 2 B + A B 2 ∣ = ∣ EB + A E ∣ = ∣ B + A ∣ ,即 ∣ A + B ∣ = 0 |A + B| = 0 ∣ A + B ∣ = 0 。
证明:不存在 n n n 阶方阵 A , B A, B A , B ,使得 A B − B A = E AB - BA = E A B − B A = E 。
提示 :考虑用矩阵迹的性质。
证明:设 C = A B , D = B A C = AB, D = BA C = A B , D = B A ,则:
c i , i = ∑ k = 1 n a i , k b k , i d i , i = ∑ k = 1 n b i , k a k , i t r C = ∑ i = 1 n c i , i , t r D = ∑ i = 1 n d i , i t r C − t r D = 0 = t r ( C − D ) ≠ t r E = n c_{i, i} = \sum_{k = 1}^n a_{i, k} b_{k, i} \\
d_{i, i} = \sum_{k = 1}^n b_{i, k} a_{k, i} \\
\mathrm {tr} \, C = \sum_{i = 1}^n c_{i, i}, \mathrm {tr} \, D = \sum_{i = 1}^n d_{i, i} \\
\mathrm {tr} \, C - \mathrm {tr} \, D = 0 = \mathrm {tr} (C - D) \not = \mathrm tr \, E = n
c i , i = k = 1 ∑ n a i , k b k , i d i , i = k = 1 ∑ n b i , k a k , i tr C = i = 1 ∑ n c i , i , tr D = i = 1 ∑ n d i , i tr C − tr D = 0 = tr ( C − D ) = t r E = n
因此不存在 n n n 阶方阵 A , B A, B A , B ,使得 A B − B A = E AB - BA = E A B − B A = E 。
证明:任一个 n n n 阶方阵都可以表示成一个对称阵与一个反对称阵之和。
证明:设方阵为 A A A ,对称阵为 B B B ,反对称阵为 C C C ,则对于对角线上的元,取 b i , i = a i , i , c i , i = 0 b_{i, i} = a_{i, i}, c_{i, i} = 0 b i , i = a i , i , c i , i = 0 即可。
当 i ≠ j i \not = j i = j 时,有如下方程组:
{ a i , j = b i , j + c i , j a j , i = b j , i + c j , i = b i , j − c i , j \begin {cases}
a_{i, j} = b_{i, j} + c_{i, j} \\
a_{j, i} = b_{j, i} + c_{j, i} = b_{i, j} - c_{i, j}
\end {cases}
{ a i , j = b i , j + c i , j a j , i = b j , i + c j , i = b i , j − c i , j
可解得 b i , j = a i , j + a j , i 2 , c i , j = a i , j − a j , i 2 b_{i, j} = \dfrac {a_{i, j} + a_{j, i}} 2, c_{i, j} = \dfrac {a_{i, j} - a_{j, i}} 2 b i , j = 2 a i , j + a j , i , c i , j = 2 a i , j − a j , i 。因此对于任意一个 n n n 阶方阵,总能以此方法表示为一个对称阵和一个反对称阵之和。
证明:如果 A A A 是 n n n 阶对称阵,B B B 是 n n n 阶反对称阵,则 A B + B A AB + BA A B + B A 是反对称阵。
证明:设 C = A B , D = B A C = AB, D = BA C = A B , D = B A ,则:
c i , j = ∑ k = 1 n a i , k b k , j d i , j = ∑ k = 1 n b i , k a k , j c i , j + d i , j = ∑ k = 1 n a i , k b k , j + ∑ k = 1 n b i , k a k , j c j , i + d j , i = ∑ k = 1 n a j , k b k , i + ∑ k = 1 n b j , k a k , i = − ∑ k = 1 n a i , k b k , j − ∑ k = 1 n b i , k a k , j = − ( c i , j + d i , j ) c_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j} \\
d_{i, j} = \sum_{k = 1}^n b_{i, k} a_{k, j} \\
c_{i, j} + d_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j} + \sum_{k = 1}^n b_{i, k} a_{k, j} \\
c_{j, i} + d_{j, i} = \sum_{k = 1}^n a_{j, k} b_{k, i} + \sum_{k = 1}^n b_{j, k} a_{k, i} = - \sum_{k = 1}^n a_{i, k} b_{k, j} - \sum_{k = 1}^n b_{i, k} a_{k, j} = - (c_{i, j} + d_{i, j})
c i , j = k = 1 ∑ n a i , k b k , j d i , j = k = 1 ∑ n b i , k a k , j c i , j + d i , j = k = 1 ∑ n a i , k b k , j + k = 1 ∑ n b i , k a k , j c j , i + d j , i = k = 1 ∑ n a j , k b k , i + k = 1 ∑ n b j , k a k , i = − k = 1 ∑ n a i , k b k , j − k = 1 ∑ n b i , k a k , j = − ( c i , j + d i , j )
因此 A B + B A AB + BA A B + B A 是反对称阵。
证明:奇数阶反对称阵的行列式等于 0 0 0 。
证明:设 A A A 为奇数阶反对称阵,则有 − A = A T -A = A^T − A = A T ,因此 det A = det ( − A ) = det A T = ( − 1 ) n det A \det A = \det (-A) = \det A^T = (-1)^{n} \det A det A = det ( − A ) = det A T = ( − 1 ) n det A ,其中 n n n 为 A A A 的维数,是一个奇数,因此 det A = − det A , det A = 0 \det A = - \det A, \det A = 0 det A = − det A , det A = 0 ,得证。
证明:偶数阶反对称阵的所有元素加上同一个数,行列式的值不变。
提示 :先证明如下结论:若 n n n 阶方阵 A A A 所有元素都加上同一个数 b b b 得到的矩阵 B B B ,则:
∣ B ∣ = ∣ A ∣ + b ∑ i , j = 1 n A i , j |B| = |A| + b \sum\limits_{i, j = 1}^n A_{i, j}
∣ B ∣ = ∣ A ∣ + b i , j = 1 ∑ n A i , j
其中 A i , j A_{i, j} A i , j 为 A A A 中元素的代数余子式;然后证明偶数阶反对称阵的伴随矩阵 A ∗ A* A ∗ 仍是反对称阵,说明 ∑ i , j = 1 n A i , j = 0 \sum\limits_{i, j = 1} ^n A_{i, j} = 0 i , j = 1 ∑ n A i , j = 0 。
证明:设 n n n 阶方阵 A = ( a 1 , 1 ⋯ a 1 , n ⋮ ⋱ ⋮ a n , 1 ⋯ a n , n ) A = \begin {pmatrix} a_{1, 1} & \cdots & a_{1, n} \\ \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, n} \end {pmatrix} A = a 1 , 1 ⋮ a n , 1 ⋯ ⋱ ⋯ a 1 , n ⋮ a n , n ,则:
∣ a 1 , 1 + b ⋯ a 1 , n + b ⋮ ⋱ ⋮ a n , 1 + b ⋯ a n , n + b ∣ = ∣ 1 b ⋯ b 0 a 1 , 1 + b ⋯ a 1 , n + b ⋮ ⋮ ⋱ ⋮ 0 a n , 1 + b ⋯ a n , n + b ∣ = ∣ 1 b ⋯ b − 1 a 1 , 1 ⋯ a 1 , n ⋮ ⋮ ⋱ ⋮ − 1 a n , 1 ⋯ a n , n ∣ = ∣ A ∣ + b ∑ i , j = 1 n M i , j ( − 1 ) 2 + i = ∣ A ∣ + b ∑ i , j n A i , j A i , j = ( − 1 ) i + j ∣ a 1 , 1 ⋯ a 1 , j − 1 a 1 , j + 1 ⋯ a 1 , n ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ a i − 1 , 1 ⋯ a i − 1 , j − 1 a i − 1 , j + 1 ⋯ a i − 1 , n a i + 1 , 1 ⋯ a i + 1 , j − 1 a i + 1 , j + 1 ⋯ a i + 1 , n ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j − 1 a n , j + 1 ⋯ a n , n ∣ A j , i = ( − 1 ) i + j ∣ a 1 , 1 ⋯ a 1 , i − 1 a 1 , i + 1 ⋯ a 1 , n ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ a j − 1 , 1 ⋯ a j − 1 , i − 1 a j − 1 , i + 1 ⋯ a j − 1 , n a j + 1 , 1 ⋯ a j + 1 , i − 1 a j + 1 , i + 1 ⋯ a j + 1 , n ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , i − 1 a n , i + 1 ⋯ a n , n ∣ \begin {vmatrix}
a_{1, 1} + b & \cdots & a_{1, n} + b \\
\vdots & \ddots & \vdots \\
a_{n, 1} + b & \cdots & a_{n, n} + b
\end {vmatrix} = \begin {vmatrix}
1 & b & \cdots & b \\
0 & a_{1, 1} + b & \cdots & a_{1, n} + b \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n, 1} + b & \cdots & a_{n, n} + b
\end {vmatrix} = \begin {vmatrix}
1 & b & \cdots & b \\
-1 & a_{1, 1} & \cdots & a_{1, n} \\
\vdots & \vdots & \ddots & \vdots \\
-1 & a_{n, 1} & \cdots & a_{n, n}
\end {vmatrix} = |A| + b \sum_{i, j = 1}^n M_{i, j} (-1)^{2 + i} = |A| + b \sum_{i, j}^n A_{i, j} \\
A_{i, j} = (-1)^{i + j} \begin {vmatrix}
a_{1, 1} & \cdots & a_{1, j - 1} & a_{1, j + 1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{i - 1, 1} & \cdots & a_{i - 1, j - 1} & a_{i - 1, j + 1} & \cdots & a_{i - 1, n} \\
a_{i + 1, 1} & \cdots & a_{i + 1, j - 1} & a_{i + 1, j + 1} & \cdots & a_{i + 1, n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, j + 1} & \cdots & a_{n, n} \\
\end {vmatrix} \\
A_{j, i} = (-1)^{i + j} \begin {vmatrix}
a_{1, 1} & \cdots & a_{1, i - 1} & a_{1, i + 1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{j - 1, 1} & \cdots & a_{j - 1, i - 1} & a_{j - 1, i + 1} & \cdots & a_{j - 1, n} \\
a_{j + 1, 1} & \cdots & a_{j + 1, i - 1} & a_{j + 1, i + 1} & \cdots & a_{j + 1, n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, i - 1} & a_{n, i + 1} & \cdots & a_{n, n} \\
\end {vmatrix}
a 1 , 1 + b ⋮ a n , 1 + b ⋯ ⋱ ⋯ a 1 , n + b ⋮ a n , n + b = 1 0 ⋮ 0 b a 1 , 1 + b ⋮ a n , 1 + b ⋯ ⋯ ⋱ ⋯ b a 1 , n + b ⋮ a n , n + b = 1 − 1 ⋮ − 1 b a 1 , 1 ⋮ a n , 1 ⋯ ⋯ ⋱ ⋯ b a 1 , n ⋮ a n , n = ∣ A ∣ + b i , j = 1 ∑ n M i , j ( − 1 ) 2 + i = ∣ A ∣ + b i , j ∑ n A i , j A i , j = ( − 1 ) i + j a 1 , 1 ⋮ a i − 1 , 1 a i + 1 , 1 ⋮ a n , 1 ⋯ ⋱ ⋯ ⋯ ⋱ ⋯ a 1 , j − 1 ⋮ a i − 1 , j − 1 a i + 1 , j − 1 ⋮ a n , j − 1 a 1 , j + 1 ⋮ a i − 1 , j + 1 a i + 1 , j + 1 ⋮ a n , j + 1 ⋯ ⋱ ⋯ ⋯ ⋱ ⋯ a 1 , n ⋮ a i − 1 , n a i + 1 , n ⋮ a n , n A j , i = ( − 1 ) i + j a 1 , 1 ⋮ a j − 1 , 1 a j + 1 , 1 ⋮ a n , 1 ⋯ ⋱ ⋯ ⋯ ⋱ ⋯ a 1 , i − 1 ⋮ a j − 1 , i − 1 a j + 1 , i − 1 ⋮ a n , i − 1 a 1 , i + 1 ⋮ a j − 1 , i + 1 a j + 1 , i + 1 ⋮ a n , i + 1 ⋯ ⋱ ⋯ ⋯ ⋱ ⋯ a 1 , n ⋮ a j − 1 , n a j + 1 , n ⋮ a n , n
注意到 A i , j = − A j , i T A_{i, j} = - A_{j, i}^T A i , j = − A j , i T ,因此 ∣ A i , j ∣ = ( − 1 ) n − 1 ∣ A j , i ∣ = − ∣ A j , i ∣ |A_{i, j}| = (-1)^{n - 1} |A_{j, i}| = - |A_{j, i}| ∣ A i , j ∣ = ( − 1 ) n − 1 ∣ A j , i ∣ = − ∣ A j , i ∣ ,即偶数阶反对称阵的伴随矩阵 A ∗ A^* A ∗ 仍是反对称阵,说明 ∑ i , j = 1 n A i , j = 0 \sum\limits_{i, j = 1}^n A_{i, j} = 0 i , j = 1 ∑ n A i , j = 0 ,从而证得 ∣ B ∣ = ∣ A ∣ |B| = |A| ∣ B ∣ = ∣ A ∣ 。