# 矩阵的线性运算(加法 + 数乘)

# 矩阵的加法

定义 11(矩阵的加法)Fm×n\mathbb F^{m \times n} 中矩阵 A=(ai,j)m×nA = (a_{i, j})_{m \times n}B=(bi,j)m×nB = (b_{i, j})_{m \times n} 相加,得到的和是 A+BA + B 矩阵,它的第 (i,j)(i, j) 元等于 A,BA, B 的第 (i,j)(i, j) 元之和 ai,j+bi,ja_{i, j} + b_{i, j},即:

(ai,j)m×n+(bi,j)m×n=(ai,j+bi,j)m×n(a_{i, j})_{m \times n} + (b_{i, j})_{m \times n} = (a_{i, j} + b_{i, j})_{m \times n}

  1. 交换律:A+B=B+AA + B = B + A

  2. 结合律:(A+B)+C=A+(B+C)(A + B) + C = A + (B + C)

  3. 零矩阵的性质:m×nm \times n 矩阵的所有元素都为 00,记作 OO,且对任意 AFm×nA \in \mathbb F^{m \times n},都有 A+O=O+A=AA + O = O + A = A

  4. 负元:A=(ai,j)m×n,A+(A)=(A)+A=O-A = (-a_{i, j})_{m \times n}, A + (-A) = (-A) + A = O

由加法可以定义减法:

AB=A+(B),(ai,j)m×n(bi,j)m×n=(ai,jbi,j)m×nA - B = A + (-B), (a_{i, j})_{m \times n} - (b_{i, j})_{m \times n} = (a_{i, j} - b_{i, j})_{m \times n}

具有相同的行与列的矩阵(型号),才能相加减。

# 矩阵的数乘

定义 22(矩阵的数乘):对任意 AFm×n,λFA \in \mathbb F^{m \times n}, \lambda \in \mathbb F,相乘得:

λA=λ(ai,j)m×n=(λai,j)m×n\lambda A = \lambda (a_{i, j})_{m \times n} = (\lambda a_{i, j})_{m \times n}

具有如下性质:

  1. 对数的加法的分配律:

    (λ+μ)A=λA+μA,AFm×n,λ,μF(\lambda + \mu) A = \lambda A + \mu A, \forall \, A \in \mathbb F^{m \times n}, \lambda, \mu \in \mathbb F

  2. 对矩阵加法的分配律:

    λ(A+B)=λA+λB,A,BFm×n,λF\lambda (A + B) = \lambda A + \lambda B, \forall \, A, B \in \mathbb F^{m \times n}, \lambda \in \mathbb F

  3. 1A=A,AFm×n1A = A, \forall \, A \in \mathbb F^{m \times n}

  4. λ(μA)=(λμ)A,AFm×n,λ,μF\lambda (\mu A) = (\lambda \mu) A, \forall \, A \in \mathbb F^{m \times n}, \lambda, \mu \in \mathbb F

Fm×n\mathbb F^{m \times n}加法和数乘 运算下满足线性空间的 88 条运算律,它为 线性空间

# 矩阵的乘法

定义 33(矩阵的乘法):对任意正整数 m,n,pm, n, p,任意的数域 F\mathbb F,任意的矩阵 A=(ai,j)m×nFm×n,B=(bi,j)n×pFn×pA = (a_{i, j})_{m \times n} \in \mathbb F^{m \times n}, B = (b_{i, j})_{n \times p} \in \mathbb F^{n \times p} 可以相乘得到的乘积 AB=(ci,j)m×pFm×pAB = (c_{i, j})_{m \times p} \in \mathbb F^{m \times p}。它的第 (i,j)(i, j) 个元:

ci,j=k=1nai,kbk,j=ai,1b1,j+ai,2b2,j++ai,nbn,jc_{i, j} = \sum_{k = 1}^{n} a_{i, k} b_{k, j} = a_{i, 1} b_{1, j} + a_{i, 2} b_{2, j} + \cdots + a_{i, n} b_{n, j}

注意

  1. A,BA, B 可以相乘的条件为:AA列数BB行数 相等。

  2. AA 的第 ii 行与 BB 的第 jj 列相乘得到的数为 ABAB 的第 (i,j)(i, j) 个元素。

  3. 矩阵乘法的交换律 不成立

  4. 存在 AO,B0A \not = O, B \not = 0,但是 AB=OAB = O 的情况。

  5. 在矩阵乘法下,消去律 不成立

# 矩阵的分块运算

# 矩阵分块的方法

A=(a1,1a1,2a1,na2,1a2,2a2,nam,1am,2am,n)=(α1α2αm)B=(b1,1b1,2b1,nb2,1b2,2b2,nbn,1bn,2nn,p)=(β1β2βp)AB=(α1α2αm)(β1β2βp)=(α1β1α1βpαmβ1αmβp)A = \begin {pmatrix} a_{1, 1} & a_{1, 2} & \cdots & a_{1, n} \\ a_{2, 1} & a_{2, 2} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m, 1} & a_{m, 2} & \cdots & a_{m, n} \end {pmatrix} = \begin {pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end {pmatrix} \\ B = \begin {pmatrix} b_{1, 1} & b_{1, 2} & \cdots & b_{1, n} \\ b_{2, 1} & b_{2, 2} & \cdots & b_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n, 1} & b_{n, 2} & \cdots & n_{n, p} \end {pmatrix} = \begin {pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end {pmatrix} \\ AB = \begin {pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end {pmatrix} \begin {pmatrix} \beta_1 & \beta_2 & \cdots & \beta_p \end {pmatrix} = \begin {pmatrix} \alpha_1 \beta_1 & \cdots & \alpha_1 \beta_p \\ \vdots & \ddots & \vdots \\ \alpha_m \beta_1 & \cdots & \alpha_m \beta_p \end {pmatrix}

特别地,AAβj\beta_j 的乘积就是 ABAB 的第 jj 列,即

Aβj=(α1α2αm)βj=(α1βjα2βjαmβj),AB=A(β1β2βp)=(Aβ1Aβ2Aβp)A \beta_j = \begin {pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end {pmatrix} \beta_j = \begin {pmatrix} \alpha_1 \beta_j \\ \alpha_2 \beta_j \\ \vdots \\ \alpha_m \beta_j \end {pmatrix}, AB = A \begin {pmatrix} \beta_1 & \beta_2 & \cdots & \beta_p \end {pmatrix} = \begin {pmatrix} A \beta_1 & A \beta_2 & \cdots & A \beta_p \end {pmatrix}

我们还有:

Aβj=(a1,1b1,j++a1,nbn,jam,1b1,j++am,nbn,j)=(a1,1am,1)b1,j++(a1,nam,n)bn,j=(α1αn)(b1,jbn,j)=α1b1,j++αnbn,j\begin {aligned} A \beta_j &= \begin {pmatrix} a_{1, 1} b_{1, j} + \cdots + a_{1, n} b_{n, j} \\ \vdots \\ a_{m, 1} b_{1, j} + \cdots + a_{m, n} b_{n, j} \end {pmatrix} = \begin {pmatrix} a_{1, 1} \\ \vdots \\ a_{m, 1} \end {pmatrix} b_{1, j} + \cdots + \begin {pmatrix} a_{1, n} \\ \vdots \\ a_{m, n} \end {pmatrix} b_{n, j} \\ &= \begin {pmatrix} \alpha_1 & \cdots & \alpha_n \end {pmatrix} \begin {pmatrix} b_{1, j} \\ \vdots \\ b_{n, j} \end {pmatrix} = \alpha_1 b_{1, j} + \cdots + \alpha_n b_{n, j} \end {aligned}

一般地,在作矩阵的运算时,可以用一些 横线和竖线 将任意矩阵 A=(ai,j)m×nA = (a_{i, j})_{m \times n} 划分成一些矩形小块:

A=(A1,1A1,2A1,qA2,1A2,2A2,qAp,1Ap,2Ap,q)A = \begin {pmatrix} A_{1, 1} & A_{1, 2} & \cdots & A_{1, q} \\ A_{2, 1} & A_{2, 2} & \cdots & A_{2, q} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p, 1} & A_{p, 2} & \cdots & A_{p, q} \end {pmatrix}

分块的方法是:想象用横线把 AAmm 行分成若干组,每组依次包含 m1,m2,,mpm_1, m_2, \cdots, m_p 行,满足 m1+m2++mp=mm_1 + m_2 + \cdots + m_p = m;用竖线将 AAnn 列分成若干组,每组依次包含 n1,n2,,nqn_1, n_2, \cdots, n_q 列,满足 n1+n2++nq=nn_1 + n_2 + \cdots + n_q = n。则 AA 被分成 pqpq 个小的矩阵 Ai,jFmi×nj,1ip,1jqA_{i, j} \in \mathbb F^{m_i \times n_j}, 1 \le i \le p, 1 \le j \le q。这就称对矩阵 AA 进行了分块(partitioning),进行了分块的矩阵 AA 被称为分块矩阵(partitioning matrix)。

在进行矩阵运算时可以暂时将每一块 Ai,jA_{i, j} 作为一个整体,看作一个元,将 AA 看作由这些元组成的 p×qp \times q 矩阵 A=(Ai,j)p×qA = (A_{i, j})_{p \times q} 来进行运算。

# 分块矩阵的加法和数乘

将两个 m×nm \times n 矩阵 A,BA, B 相加,可以将 A,BA, B 进行 同样方式的分块

A=(A1,1A1,2A1,qA2,1A2,2A2,qAp,1Ap,2Ap,q)B=(B1,1B1,2B1,qB2,1B2,2B2,qBp,1Bp,2Bp,q)A = \begin {pmatrix} A_{1, 1} & A_{1, 2} & \cdots & A_{1, q} \\ A_{2, 1} & A_{2, 2} & \cdots & A_{2, q} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p, 1} & A_{p, 2} & \cdots & A_{p, q} \end {pmatrix} \quad B = \begin {pmatrix} B_{1, 1} & B_{1, 2} & \cdots & B_{1, q} \\ B_{2, 1} & B_{2, 2} & \cdots & B_{2, q} \\ \vdots & \vdots & \ddots & \vdots \\ B_{p, 1} & B_{p, 2} & \cdots & B_{p, q} \end {pmatrix}

使处于同一位置的块 Ai,jA_{i, j}Bi,jB_{i, j} 的行数相等列数也相等。将 A,BA, B 中处于同一位置的块 Ai,j,Bi,jA_{i, j}, B_{i, j} 相加,得到的:

(Ai,j+Bi,j)p×q=(A1,1+B1,1A1,2+B1,2A1,q+B1,qA2,1+B2,1A2,2+B2,2A2,q+B2,qAp,1+Bp,1Ap,2+Bp,2Ap,q+Bp,q)(A_{i, j} + B_{i, j})_{p \times q} = \begin {pmatrix} A_{1, 1} + B_{1, 1} & A_{1, 2} + B_{1, 2} & \cdots & A_{1, q} + B_{1, q} \\ A_{2, 1} + B_{2, 1} & A_{2, 2} + B_{2, 2} & \cdots & A_{2, q} + B_{2, q} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p, 1} + B_{p, 1} & A_{p, 2} + B_{p, 2} & \cdots & A_{p, q} + B_{p, q} \end {pmatrix}

就是 A+BA + B 的分块形式。

对任意的 λF\lambda \in \mathbb F,还容易看出:

λ(A1,1A1,2A1,qA2,1A2,2A2,qAp,1Ap,2Ap,q)=(λA1,1λA1,2λA1,qλA2,1λA2,2λA2,qλAp,1λAp,2λAp,q)\lambda \begin {pmatrix} A_{1, 1} & A_{1, 2} & \cdots & A_{1, q} \\ A_{2, 1} & A_{2, 2} & \cdots & A_{2, q} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p, 1} & A_{p, 2} & \cdots & A_{p, q} \end {pmatrix} = \begin {pmatrix} \lambda A_{1, 1} & \lambda A_{1, 2} & \cdots & \lambda A_{1, q} \\ \lambda A_{2, 1} & \lambda A_{2, 2} & \cdots & \lambda A_{2, q} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda A_{p, 1} & \lambda A_{p, 2} & \cdots & \lambda A_{p, q} \end {pmatrix}

# 分块矩阵的乘法

将矩阵 AFm×n,BFn×rA \in \mathbb F^{m \times n}, B \in \mathbb F^{n \times r} 相乘,可以将 A,BA, B 进行分块:

A=(A1,1A1,2A1,sAp,1Ap,2Ap,s),B=(B1,1B1,2B1,sBp,1Bp,2Bp,s)A = \begin {pmatrix} A_{1, 1} & A_{1, 2} & \cdots & A_{1, s} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p, 1} & A_{p, 2} & \cdots & A_{p, s} \end {pmatrix}, B = \begin {pmatrix} B_{1, 1} & B_{1, 2} & \cdots & B_{1, s} \\ \vdots & \vdots & \ddots & \vdots \\ B_{p, 1} & B_{p, 2} & \cdots & B_{p, s} \end {pmatrix}

其中 Ai,jFmi×nj,Bi,jFni×rj,m1+m2++mp=m,n1+n2++ns=n,r1+r2++rq=rA_{i, j} \in \mathbb F^{m_i \times n_j}, B_{i, j} \in \mathbb F^{n_i \times r_j}, m_1 + m_2 + \cdots + m_p = m, n_1 + n_2 + \cdots + n_s = n, r_1 + r_2 + \cdots + r_q = r

A,BA, B 可以看作以它们的块为元的矩阵来相乘得到分块矩阵:

C=(C1,1C1,qCp,1Cp,q)C = \begin {pmatrix} C_{1, 1} & \cdots & C_{1, q} \\ \vdots & \ddots & \vdots \\ C_{p, 1} & \cdots & C_{p, q} \end {pmatrix}

其中 Ci,j=k=1sAi,kBk,j=Ai,1B1,j+Ai,2B2,j++Ai,sBs,jC_{i, j} = \sum\limits_{k = 1}^s A_{i, k} B_{k, j} = A_{i, 1} B_{1, j} + A_{i, 2} B_{2, j} + \cdots + A_{i, s} B_{s, j}

可以验证,这样得到的 CC 就等于 ABAB

定义 44(对角元与对角阵):方阵 A=(ai,j)n×nA = (a_{i, j})_{n \times n} 的第 (i,i)(i, i) 元称为方阵的对角元,nn 个对角元 a1,1,a2,2,,an,na_{1, 1}, a_{2, 2}, \cdots, a_{n, n} 所在位置组成的一条线称为方阵 AA 的主对角线。

如果 AA 的所有非对角元 ai,j(ij)a_{i, j} (i \not = j) 都为 00,称 AA 为对角阵,记作 A=diag(a1,1,,an,n)A = \mathrm {diag} (a_{1, 1}, \cdots, a_{n, n})

1.1.Λ=diag(λ1,λ2,,λn),A=(ai,j)n×n\Lambda = \mathrm {diag} (\lambda_1, \lambda_2, \cdots, \lambda_n), A = (a_{i, j})_{n \times n}nn 阶方阵,求 ΛA\Lambda A

A=(A1An)A = \begin {pmatrix} A_1 \\ \vdots \\ A_n \end {pmatrix},则:

ΛA=(λ100λn)(A1An)=(λ1A1λnAn)=(λ1a1,1λ1a1,2λ1a1,nλnan,1λnan,2λnan,n)\Lambda A = \begin {pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end {pmatrix} \begin {pmatrix} A_1 \\ \vdots \\ A_n \end {pmatrix} = \begin {pmatrix} \lambda_1 A_1 \\ \vdots \\ \lambda_n A_n \end {pmatrix} = \begin {pmatrix} \lambda_1 a_{1, 1} & \lambda_1 a_{1, 2} & \cdots & \lambda_1 a_{1, n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_n a_{n, 1} & \lambda_n a_{n, 2} & \cdots & \lambda_n a_{n, n} \end {pmatrix}

即将 AA 的各行分别乘以 λ1,λ2,,λn\lambda_1, \lambda_2, \cdots, \lambda_n 就得到 ΛA\Lambda A

定义 55(数量阵与单位阵):若 a1,1==an,n=λa_{1, 1} = \cdots = a_{n, n} = \lambda,称

Λ=diag(λ,,λ)\Lambda = \mathrm {diag} (\lambda, \cdots, \lambda)

为数量阵。

对任意方阵 BB,有 ΛB=BΛ=λB\Lambda B = B \Lambda = \lambda B

I=diag(1,,1)I = \mathrm {diag} (1, \cdots, 1)

称为单位阵,有时写成 I(n)I_{(n)}

对任意的 m×nm \times n 矩阵 BB,有:

(λI(m))B=λB,B(λI(n))=λB(\lambda I_{(m)}) B = \lambda B, B(\lambda I_{(n)}) = \lambda B

矩阵乘法满足以下与数的乘法类似的性质:

  1. 结合律 C(BA)=(CB)AC(BA) = (CB)A

    证明:设 A=(ai,j)m×n,B=(bi,j)p×m,C=(ci,j)q×pA = (a_{i, j})_{m \times n}, B = (b_{i, j})_{p \times m}, C = (c_{i, j})_{q \times p}

    BA=D=(di,j)p×nBA = D = (d_{i, j})_{p \times n},其中

    di,j=k=1mbi,kak,jd_{i, j} = \sum_{k = 1}^m b_{i, k} a_{k, j}

    从而 C(BA)=CD=G=(gi,j)q×nC(BA) = CD = G = (g_{i, j})_{q \times n},其中

    gi,j=s=1pci,sds,j=s=1pci,s(k=1mbs,kak,j)=1sp,1kmci,sbs,kak,jg_{i, j} = \sum_{s = 1}^p c_{i, s} d_{s, j} = \sum_{s = 1}^p c_{i, s} \left( \sum_{k = 1}^m b_{s, k} a_{k, j} \right) = \sum_{1 \le s \le p, 1 \le k \le m} c_{i, s} b_{s, k} a_{k, j}

    另外,CB=U=(ui,j)q×mCB = U = (u_{i, j})_{q \times m},其中

    ui,j=s=1pci,sbs,ju_{i, j} = \sum_{s = 1}^p c_{i, s} b_{s, j}

    从而 (CB)A=UA=H=(hi,j)q×n(CB)A = UA = H = (h_{i, j})_{q \times n},其中

    hi,j=k=1mui,kak,j=k=1m(s=1pci,sbs,k)ak,j=1sp,1kmci,sbs,kak,jh_{i, j} = \sum_{k = 1}^m u_{i, k} a_{k, j} = \sum_{k = 1}^m \left( \sum_{s = 1}^p c_{i, s} b_{s, k} \right) a_{k, j} = \sum_{1 \le s \le p, 1 \le k \le m} c_{i, s} b_{s, k} a_{k, j}

    比较以上两式,即得结论。

  2. 与数乘的结合律:

    λ(AB)=(λA)B=A(λB)\lambda (AB) = (\lambda A) B = A (\lambda B)

  3. 乘法对于加法的分配律:

    A(B+C)=AB+AC,(B+C)A=BA+CAA(B + C) = AB + AC, (B + C) A = BA + CA

2.2. A=(1212121212121212)A = \begin {pmatrix} 1 & 2 & 1 & 2 \\ -1 & -2 & -1 & -2 \\ 1 & 2 & 1 & 2 \\ -1 & -2 & -1 & -2 \end {pmatrix},求 A10A^{10}

:记 X=(1,2,1,2)X = (1, 2, 1, 2),则

A=(XXXX)=(1111)X=YXA = \begin {pmatrix} X \\ -X \\ X \\ -X \end {pmatrix} = \begin {pmatrix} 1 \\ -1 \\ 1 \\ -1 \end {pmatrix} X = YX

于是:

A10=(YX)(YX)(YX)=Y(XY)9XA^{10} = (YX)(YX) \cdots (YX) = Y (XY)^9 X

由:

XY=(1212)(1111)=2XY = \begin {pmatrix} 1 & 2 & 1 & 2 \end {pmatrix} \begin {pmatrix} 1 \\ -1 \\ 1 \\ -1 \end {pmatrix} = -2

得:

A10=Y(2)9X=512A=(51210245121024512102451210245121024512102451210245121024)A^{10} = Y(-2)^9X = -512 A = \begin {pmatrix} -512 & -1024 & -512 & -1024 \\ 512 & 1024 & 512 & 1024 \\ -512 & -1024 & -512 & -1024 \\ 512 & 1024 & 512 & 1024 \end {pmatrix}

3.3. 设方阵 AA 的秩为 11,对角元之和为 λ\lambda,求证:An=λn1AA^n = \lambda^{n - 1} A

证明rankA=1\mathrm {rank} \, A = 1,则其行向量组的极大线性无关组由一个非零向量 β=(b1,,bn)\beta = (b_1, \cdots, b_n) 组成。AA 的每一行 αi\alpha_i 都是 β\beta 的常数倍:αi=aiβ\alpha_i = a_i \beta。于是:

A=(a1βanβ)=(a1an)β=αβ=(a1b1a1bnanb1anbn),An=(αβ)(αβ)(αβ)=α(βα)n1β=αλn1β=λn1αβ=λn1AA = \begin {pmatrix} a_1 \beta \\ \vdots \\ a_n \beta \end {pmatrix} = \begin {pmatrix} a_1 \\ \vdots \\ a_n \end {pmatrix} \beta = \alpha \beta = \begin {pmatrix} a_1 b_1 & \cdots & a_1 b_n \\ \vdots & \ddots & \vdots \\ a_n b_1 & \cdots & a_n b_n \end {pmatrix}, \\ \begin {aligned} A^n &= (\alpha \beta) (\alpha \beta) \cdots (\alpha \beta) = \alpha (\beta \alpha)^{n - 1} \beta \\ &= \alpha \lambda^{n - 1} \beta = \lambda^{n - 1} \alpha \beta = \lambda^{n - 1} A \end {aligned}

其中 λ=βα=a1b1++anbn\lambda = \beta \alpha = a_1 b_1 + \cdots + a_n b_n

:方阵 AA 对角元之和称为 AA,记作 trA\mathrm {tr} A

# 方阵的多项式

由矩阵的乘法可以定义方阵 AA 的各次幂:

A1=A,A2=AA,A3=(A2)A,,Ak+1=(Ak)A,kNA^1 = A, A^2 = AA, A^3 = (A^2) A, \cdots, A^{k + 1} = (A^k) A, \forall \, k \in \N

由矩阵乘法的结合律,对 m,nN\forall \, m, n \in \N,有:

AmAn=Am+nA^m A^n = A^{m + n}

设关于 xx 的多项式

f(x)=a0+a1x+a2x2++amxmF[x]f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_m x^m \in \mathbb F[x]

AA 是任一 nn 阶方阵,则:

f(A)=a0I+a1A+a2A2++amAmFn×nf(A) = a_0 I + a_1 A + a_2 A^2 + \cdots + a_m A^m \in \mathbb F^{n \times n}

f(x),g(x)F[x]\forall f(x), g(x) \in \mathbb F[x],设 s(x)=f(x)+g(x),p(x)=f(x)g(x)s(x) = f(x) + g(x), p(x) = f(x) g(x),则 s(A)=f(A)+g(A),p(A)=f(A)g(A)s(A) = f(A) + g(A), p(A) = f(A) g(A)

# 转置与共轭

定义 66(转置矩阵):将 m×nm \times n 矩阵

A=(a1,1a1,2a1,na2,1a2,2a2,nam,1am,2am,n)A = \begin {pmatrix} a_{1, 1} & a_{1, 2} & \cdots & a_{1, n} \\ a_{2, 1} & a_{2, 2} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m, 1} & a_{m, 2} & \cdots & a_{m, n} \end {pmatrix}

的行列互换得到 n×mn \times m 矩阵,称为 AA 的转置矩阵,记作 ATA^T,即

AT=(a1,1a2,1am,1a1,2a2,2am,2a1,na2,nam,n)A^T = \begin {pmatrix} a_{1, 1} & a_{2, 1} & \cdots & a_{m, 1} \\ a_{1, 2} & a_{2, 2} & \cdots & a_{m, 2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1, n} & a_{2, n} & \cdots & a_{m, n} \end {pmatrix}

ATA^T 的第 (i,j)(i, j) 元等于 AA 的第 (j,i)(j, i) 元。

矩阵的转置满足如下运算律

  1. (AT)T=A(A^T)^T = A

  2. nn 阶方阵 A,AT=AA, |A^T| = |A|

  3. (A+B)T=AT+BT(A + B)^T = A^T + B^T

  4. (λA)T=λAT(\lambda A)^T = \lambda A^Tλ\lambda 是任意数。

  5. (AB)T=BTAT(AB)^T = B^T A^T

  6. 设分块矩阵 AFm×nA \in \mathbb F^{m \times n},则 AA 的转置:

    A=(A1,1A1,2A1,qA2,1A2,2A2,qAp,1Ap,2Ap,q)AT=(A1,1TA2,1TAp,1TA1,2TA2,2TAp,2TA1,qTA2,qTAp,qT)A = \begin {pmatrix} A_{1, 1} & A_{1, 2} & \cdots & A_{1, q} \\ A_{2, 1} & A_{2, 2} & \cdots & A_{2, q} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p, 1} & A_{p, 2} & \cdots & A_{p, q} \end {pmatrix} \quad A^T = \begin {pmatrix} A_{1, 1}^T & A_{2, 1}^T & \cdots & A_{p, 1}^T \\ A_{1, 2}^T & A_{2, 2}^T & \cdots & A_{p, 2}^T \\ \vdots & \vdots & \ddots & \vdots \\ A_{1, q}^T & A_{2, q}^T & \cdots & A_{p, q}^T \end {pmatrix}

证明 (5):设 A=(ai,j)m×n,B=(bi,j)n×p,AB=C=(ci,j)m×pA = (a_{i, j})_{m \times n}, B = (b_{i, j})_{n \times p}, AB = C = (c_{i, j})_{m \times p},则:

ci,j=k=1nai,kbk,jc_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j}

另外,

AT=(ai,j)n×m,BT=(bi,j)p×nA^T = (a'_{i, j})_{n \times m}, B^T = (b'_{i, j})_{p \times n}

其中 ai,j=aj,i,bi,j=bj,ia'_{i, j} = a_{j, i}, b'_{i, j} = b_{j, i}

BTAT=D=(di,j)p×mB^T A^T = D = (d_{i, j})_{p \times m},则:

di,j=k=1nbj,kak,i=k=1nbk,jai,k=ci,jd_{i, j} = \sum_{k = 1}^n b'_{j, k} a'_{k, i} = \sum_{k = 1}^n b_{k, j} a_{i, k} = c_{i, j}

于是 D=CTD = C^T,即 (AB)T=BTAT(AB)^T = B^T A^T

定义 77:设 AA 是方阵,若 A=ATA = A^T,则称 AA对称方阵。若 AT=AA^T = -A,就称 AA反对称方阵,也称 斜对称方阵

4.4.AAnn 阶反对称矩阵,XXnn 维列向量。求证:XTAX=0X^T AX = 0

证明XTAXX^TAX 由一个元组成,因此:

XTAX=(XTAX)T=XTAT(XT)T=XT(A)X=XTAXX^TAX = (X^TAX)^T = X^T A^T (X^T)^T = X^T (-A) X = -X^TAX

即有 XTAX=0X^T AX = 0

定义 88(共轭矩阵):设 A=(ai,j)m×nCm×nA = (a_{i, j})_{m \times n} \in \mathbb C^{m \times n},其共轭矩阵为 (ai,j)m×n(\overline{a_{i, j}})_{m \times n},记作 A\overline {A}

矩阵共轭的性质

  1. A,BCm×n,A+B=A+B\forall \, A, B \in \mathbb C^{m \times n}, \overline {A + B} = \overline A + \overline B

  2. λC,ACm×n,λA=λA\forall \, \lambda \in \mathbb C, A \in \mathbb C^{m \times n}, \overline {\lambda A} = \overline \lambda \overline A

  3. ACm×n,BCn×p,AB=AB\forall \, A \in \mathbb C^{m \times n}, B \in \mathbb C^{n \times p}, \overline {AB} = \overline A \overline B

  4. ACm×n,AT=AT\forall \, A \in \mathbb C^{m \times n}, \overline A^T = \overline {A^T}

定义 99:设 ACm×nA \in \mathbb C^{m \times n},若 AT=A\overline A^T = A,则称 AA 为 Hermite 方阵。若 AT=A\overline A^T = -A,就称 AA 是反 Hermite 方阵。

复矩阵 AA 的共轭转置记为 AA^*,则如下性质成立:

  1. (A)=A(A^*)^* = A

  2. (A+B)=A+B(A + B)^* = A^* + B^*

  3. (λA)=λA(\lambda A)^* = \overline \lambda A^*

  4. (AB)=BA(AB)^* = B^* A^*

  5. A=A|A^*| = \overline {|A|}

# 方阵行列式

方阵的行列式具有一些重要的性质和规则:

  1. 交换律:对于方阵 AABB,有 det(AB)=det(BA)\det (AB) = \det (BA),即方阵乘积的行列式等于乘积顺序颠倒时的行列式;

  2. 转置:对于方阵 AA,有 det(AT)=detA\det (A^T) = \det A,即方阵转置后的行列式等于原始矩阵的行列式;

  3. 逆矩阵:对于可逆方阵 AA,有 det(A1)=1det(A)\det (A^{-1}) = \dfrac 1 {\det (A)},即可逆方阵的逆矩阵的行列式等于原始矩阵的行列式的倒数;

  4. 缩放:对于方阵 AA 和标量 kk,有 det(kA)=kndet(A)\det (kA) = k^n \det (A),其中 nn 为方阵 AA 的维度。即对方阵进行整体缩放,行列式等于原始矩阵的行列式乘以缩放因子的 nn 次幂;

  5. 乘法:对于方阵 AABB,有 det(AB)=det(A)×det(B)\det (AB) = \det (A) \times \det (B),即方阵乘积的行列式等于各个矩阵行列式的乘积;

  6. 零元素:如果方阵 AA 中存在一行(或一列)全为零,则 det(A)=0\det (A) = 0,即方阵的行列式为零,当且仅当矩阵中存在一行(或一列)全为零。

# 习题

  1. A=(1000λ0000),B=(abcbcacab)A = \begin {pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 0 \end {pmatrix}, B = \begin {pmatrix} a & b & c \\ b & c & a \\ c & a & b \end {pmatrix},问 ABABBABA 是否相等?

    解:

    AB=(abcλbλcλa000)BA=(aλb0bλc0cλa0) AB = \begin {pmatrix} a & b & c \\ \lambda b & \lambda c & \lambda a \\ 0 & 0 & 0 \end {pmatrix} \quad BA = \begin {pmatrix} a & \lambda b & 0 \\ b & \lambda c & 0 \\ c & \lambda a & 0 \end {pmatrix}

    因此 ABBAAB \not = BA

  2. 计算:

    (1) (010001100)10\begin {pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end {pmatrix}^{10}

    (2) (111222444)11\begin {pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end {pmatrix}^{11}

    (3) (0111)100\begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix}^{100}

    (4) (123014001)5\begin {pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end {pmatrix}^5

    (5) (a1000a1000a1000a)5\begin {pmatrix} a & 1 & 0 & 0 \\ 0 & a & 1 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a \end {pmatrix}^5

    (1) 解:

    (010001100)(010001100)=(001100010)(001100010)(010001100)=(100010001)=I(3)(010001100)10=I(3)3(010001100)=(010001100) \begin {pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end {pmatrix} \begin {pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end {pmatrix} = \begin {pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end {pmatrix} \\ \begin {pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end {pmatrix} \begin {pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end {pmatrix} = \begin {pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {pmatrix} = I_{(3)} \\ \begin {pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end {pmatrix}^{10} = I_{(3)}^3 \begin {pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end {pmatrix} = \begin {pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end {pmatrix}

    (2) 解:设 α=(1,1,1),β=(124)\alpha = (1, 1, -1), \beta = \begin {pmatrix} 1 \\ 2 \\ 4 \end {pmatrix},则:

    (111222444)11=[(βββ)(α2α4α)]5(111222444)=(βα)5(111222444)=β(αβ)4α(111222444)=βα(111222444)=(111222444)2=(111222444) \begin {aligned} \begin {pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end {pmatrix}^{11} &= \left[ \begin {pmatrix} \beta & \beta & - \beta \end {pmatrix} \begin {pmatrix} \alpha \\ 2 \alpha \\ 4 \alpha \end {pmatrix} \right]^5 \begin {pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end {pmatrix} \\ &= (- \beta \alpha)^5 \begin {pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end {pmatrix} \\ &= - \beta (\alpha \beta)^4 \alpha \begin {pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end {pmatrix} \\ &= - \beta \alpha \begin {pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end {pmatrix} \\ &= - \begin {pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end {pmatrix}^2 = \begin {pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end {pmatrix} \end {aligned}

    (3) 解:

    (0111)2=(1110)(0111)3=(1110)(0111)=(1001)=I(2)(0111)100=(I(2))33(0111)=(0111) \begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix}^2 = \begin {pmatrix} -1 & -1 \\ 1 & 0 \end {pmatrix} \\ \begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix}^3 = \begin {pmatrix} -1 & -1 \\ 1 & 0 \end {pmatrix} \begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix} = \begin {pmatrix} 1 & 0 \\ 0 & 1 \end {pmatrix} = I_{(2)} \\ \begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix}^{100} = (I_{(2)})^{33} \begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix} = \begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix}

    (4) 解:

    (123014001)2=(1414018001)(123014001)3=(1414018001)(123014001)=(16330112001)(123014001)4=(16330112001)(123014001)=(18600116001)(123014001)5=(18600116001)(123014001)=(110950120001) \begin {pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end {pmatrix}^2 = \begin {pmatrix} 1 & 4 & 14 \\ 0 & 1 & 8 \\ 0 & 0 & 1 \end {pmatrix} \\ \begin {pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end {pmatrix}^3 = \begin {pmatrix} 1 & 4 & 14 \\ 0 & 1 & 8 \\ 0 & 0 & 1 \end {pmatrix} \begin {pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end {pmatrix} = \begin {pmatrix} 1 & 6 & 33 \\ 0 & 1 & 12 \\ 0 & 0 & 1 \end {pmatrix} \\ \begin {pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end {pmatrix}^4 = \begin {pmatrix} 1 & 6 & 33 \\ 0 & 1 & 12 \\ 0 & 0 & 1 \end {pmatrix} \begin {pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end {pmatrix} = \begin {pmatrix} 1 & 8 & 60 \\ 0 & 1 & 16 \\ 0 & 0 & 1 \end {pmatrix} \\ \begin {pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end {pmatrix}^5 = \begin {pmatrix} 1 & 8 & 60 \\ 0 & 1 & 16 \\ 0 & 0 & 1 \end {pmatrix} \begin {pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end {pmatrix} = \begin {pmatrix} 1 & 10 & 95 \\ 0 & 1 & 20 \\ 0 & 0 & 1 \end {pmatrix}

    (5) 解:记 A=(a10a),B=(0010)A = \begin {pmatrix} a & 1 \\ 0 & a \end {pmatrix}, B = \begin {pmatrix} 0 & 0 \\ 1 & 0 \end {pmatrix},则:

    A2=(a22a0a2)A3=(a22a0a2)(a10a)=(a33a20a3)A4=(a33a20a3)(a10a)=(a44a30a4)A5=(a44a30a4)(a10a)=(a55a40a5)A4B=(a44a30a4)(0010)=(4a30a40)A3BA=(a33a20a3)(0010)(a10a)=(3a20a30)(a10a)=(3a33a2a4a3)A2BA2=(a22a0a2)(0010)(a22a0a2)=(2a0a20)(a22a0a2)=(2a34a2a42a3)ABA3=(a10a)(0010)(a33a20a3)=(10a0)(a33a20a3)=(a33a2a43a3)BA4=(0010)(a44a30a4)=(00a44a3)A4B+A3BA+A2BA2+ABA3+BA4=(10a310a25a410a3)(a1000a1000a1000a)5=(ABOA)5=(A2AB+BAOA2)2(ABOA)=(A4A3B+A2BA+ABA2+BA3OA4)(ABOA)=(A5A4B+A3BA+A2BA2+ABA3+BA4OA5)=(a55a410a310a20a55a410a300a55a4000a5) A^2 = \begin {pmatrix} a^2 & 2a \\ 0 & a^2 \end {pmatrix} \\ A^3 = \begin {pmatrix} a^2 & 2a \\ 0 & a^2 \end {pmatrix} \begin {pmatrix} a & 1 \\ 0 & a \end {pmatrix} = \begin {pmatrix} a^3 & 3a^2 \\ 0 & a^3 \end {pmatrix} \\ A^4 = \begin {pmatrix} a^3 & 3a^2 \\ 0 & a^3 \end {pmatrix} \begin {pmatrix} a & 1 \\ 0 & a \end {pmatrix} = \begin {pmatrix} a^4 & 4a^3 \\ 0 & a^4 \end {pmatrix} \\ A^5 = \begin {pmatrix} a^4 & 4a^3 \\ 0 & a^4 \end {pmatrix} \begin {pmatrix} a & 1 \\ 0 & a \end {pmatrix} = \begin {pmatrix} a^5 & 5a^4 \\ 0 & a^5 \end {pmatrix} \\ A^4B = \begin {pmatrix} a^4 & 4a^3 \\ 0 & a^4 \end {pmatrix} \begin {pmatrix} 0 & 0 \\ 1 & 0 \end {pmatrix} = \begin {pmatrix} 4a^3 & 0 \\ a^4 & 0 \end {pmatrix} \\ A^3BA = \begin {pmatrix} a^3 & 3a^2 \\ 0 & a^3 \end {pmatrix} \begin {pmatrix} 0 & 0 \\ 1 & 0 \end {pmatrix} \begin {pmatrix} a & 1 \\ 0 & a \end {pmatrix} = \begin {pmatrix} 3a^2 & 0 \\ a^3 & 0 \end {pmatrix} \begin {pmatrix} a & 1 \\ 0 & a \end {pmatrix} = \begin {pmatrix} 3a^3 & 3a^2 \\ a^4 & a^3 \end {pmatrix} \\ A^2BA^2 = \begin {pmatrix} a^2 & 2a \\ 0 & a^2 \end {pmatrix} \begin {pmatrix} 0 & 0 \\ 1 & 0 \end {pmatrix} \begin {pmatrix} a^2 & 2a \\ 0 & a^2 \end {pmatrix} = \begin {pmatrix} 2a & 0 \\ a^2 & 0 \end {pmatrix} \begin {pmatrix} a^2 & 2a \\ 0 & a^2 \end {pmatrix} = \begin {pmatrix} 2a^3 & 4a^2 \\ a^4 & 2a^3 \end {pmatrix} \\ ABA^3 = \begin {pmatrix} a & 1 \\ 0 & a \end {pmatrix} \begin {pmatrix} 0 & 0 \\ 1 & 0 \end {pmatrix} \begin {pmatrix} a^3 & 3a^2 \\ 0 & a^3 \end {pmatrix} = \begin {pmatrix} 1 & 0 \\ a & 0 \end {pmatrix} \begin {pmatrix} a^3 & 3a^2 \\ 0 & a^3 \end {pmatrix} = \begin {pmatrix} a^3 & 3a^2 \\ a^4 & 3a^3 \end {pmatrix} \\ BA^4 = \begin {pmatrix} 0 & 0 \\ 1 & 0 \end {pmatrix} \begin {pmatrix} a^4 & 4a^3 \\ 0 & a^4 \end {pmatrix} = \begin {pmatrix} 0 & 0 \\ a^4 & 4a^3 \end {pmatrix} \\ A^4B + A^3BA + A^2BA^2 + ABA^3 + BA^4 = \begin {pmatrix} 10a^3 & 10a^2 \\ 5a^4 & 10a^3 \end {pmatrix} \\ \begin {aligned} \begin {pmatrix} a & 1 & 0 & 0 \\ 0 & a & 1 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a \end {pmatrix}^5 &= \begin {pmatrix} A & B \\ O & A \end {pmatrix}^5 \\ &= \begin {pmatrix} A^2 & AB + BA \\ O & A^2 \end {pmatrix}^2 \begin {pmatrix} A & B \\ O & A \end {pmatrix} \\ &= \begin {pmatrix} A^4 & A^3B + A^2BA + ABA^2 + BA^3 \\ O & A^4 \end {pmatrix} \begin {pmatrix} A & B \\ O & A \end {pmatrix} \\ &= \begin {pmatrix} A^5 & A^4B + A^3BA + A^2BA^2 + ABA^3 + BA^4 \\ O & A^5 \end {pmatrix} \\ &= \begin {pmatrix} a^5 & 5a^4 & 10a^3 & 10a^2 \\ 0 & a^5 & 5a^4 & 10a^3 \\ 0 & 0 & a^5 & 5a^4 \\ 0 & 0 & 0 & a^5 \end {pmatrix} \end {aligned}

  3. 举出分别满足下列条件的整数 22 阶方阵 AA,其中 EE 为单位阵:

    (1) A±EA \not = \pm E,但 A2=EA^2 = E

    (2) AEA \not = E,但 A3=EA^3 = E

    (3) A2=EA^2 = -E

    (4) A2=2EA^2 = -2E

    (1) 解:设 A=(abcd)A = \begin {pmatrix} a & b \\ c & d \end {pmatrix},则:

    A2=(abcd)(abcd)=(a2+bcab+bdac+cdbc+d2) A^2 = \begin {pmatrix} a & b \\ c & d \end {pmatrix} \begin {pmatrix} a & b \\ c & d \end {pmatrix} = \begin {pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end {pmatrix}

    只需使如下方程组成立:

    {a2+bc=1ab+bd=0ac+cd=0bc+d2=1 \begin {cases} a^2 + bc = 1 \\ ab + bd = 0 \\ ac + cd = 0 \\ bc + d^2 = 1 \end {cases}

    a=1,b=c=0,d=1a = 1, b = c = 0, d = -1 即可,即 A=(1001)A = \begin {pmatrix} 1 & 0 \\ 0 & -1 \end {pmatrix}

    (2) 解:

    A3=(a2+bcab+bdac+cdbc+d2)(abcd)=(a3+2abc+bcda2b+b2c+abd+bd2a2c+acd+bc2+cd2abc+2bcd+d3) A^3 = \begin {pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end {pmatrix} \begin {pmatrix} a & b \\ c & d \end {pmatrix} = \begin {pmatrix} a^3 + 2abc + bcd & a^2b + b^2c + abd + bd^2 \\ a^2c + acd + bc^2 + cd^2 & abc + 2bcd + d^3 \end {pmatrix}

    只需使如下方程组成立:

    {a3+2abc+bcd=1a2b+b2c+abd+bd2=0a2c+acd+bc2+cd2=0abc+2bcd+d3=1 \begin {cases} a^3 + 2abc + bcd = 1 \\ a^2b + b^2c + abd + bd^2 = 0 \\ a^2c + acd + bc^2 + cd^2 = 0 \\ abc + 2bcd + d^3 = 1 \end {cases}

    a=0,b=1,c=1,d=1a = 0, b = 1, c = -1, d = -1 即可,即 A=(0111)A = \begin {pmatrix} 0 & 1 \\ -1 & -1 \end {pmatrix}

    (3) 解:只需使如下方程组成立:

    {a2+bc=1ab+bd=0ac+cd=0bc+d2=1 \begin {cases} a^2 + bc = -1 \\ ab + bd = 0 \\ ac + cd = 0 \\ bc + d^2 = -1 \end {cases}

    a=1,b=1,c=2,d=1a = 1, b = 1, c = -2, d = -1 即可,即 A=(1121)A = \begin {pmatrix} 1 & 1 \\ -2 & -1 \end {pmatrix}

    (4) 解:只需使如下方程组成立:

    {a2+bc=2ab+bd=0ac+cd=0bc+d2=2 \begin {cases} a^2 + bc = -2 \\ ab + bd = 0 \\ ac + cd = 0 \\ bc + d^2 = -2 \end {cases}

    a=1,b=1,c=3,d=1a = 1, b = 1, c = -3, d = -1 即可,即 A=(1131)A = \begin {pmatrix} 1 & 1 \\ -3 & -1 \end {pmatrix}

  4. AA 是一个对角阵,它的主对角线上的元素 a1,1,a2,2,,an,na_{1, 1}, a_{2, 2}, \cdots, a_{n, n} 两两不同。证明:凡与 AA 相乘可交换的矩阵一定是对角阵。

    证明:设矩阵 BB 不是对角阵,与 AA 相乘可交换,不妨设 bi,j0,ijb_{i, j} \not = 0, i \not = j,设 C=AB,D=BAC = AB, D = BA,则:

    ci,j=k=1nai,kbk,j=ai,ibi,jdi,j=k=1nbi,kak,j=bi,jaj,j c_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j} = a_{i, i} b_{i, j} \\ d_{i, j} = \sum_{k = 1}^n b_{i, k} a_{k, j} = b_{i, j} a_{j, j}

    由于 ai,iaj,ja_{i, i} \not = a_{j, j},所以 ci,jdi,jc_{i, j} \not = d_{i, j}AABB 相乘不可交换,凡与 AA 相乘可交换的矩阵一定是对角阵。

  5. n2n \ge 2,是否存在一个方阵 AFn×nA \in \mathbb F^{n \times n},使得 Fn×n\mathbb F^{n \times n} 中所有的方阵都可以写成:

    a0E+a1A++amAma_0 E + a_1 A + \cdots + a_m A^m

    其中 mm 为正整数,EE 为单位阵,a0,a1,,amFa_0, a_1, \cdots, a_m \in \mathbb F?请说明理由。

    提示:这种形式的矩阵与 AA 相乘可以交换。

    解:由题,若存在这样的 AA,则对任意的 BFn×nB \in \mathbb F^{n \times n},都应有 BBAA 相乘可交换,设 C=AB,D=BAC = AB, D = BA,则:

    ci,j=k=1nai,kbk,j=ai,ibi,jdi,j=k=1nbi,kak,j=bi,jaj,j c_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j} = a_{i, i} b_{i, j} \\ d_{i, j} = \sum_{k = 1}^n b_{i, k} a_{k, j} = b_{i, j} a_{j, j}

    则应有 ai,i=aj,ja_{i, i} = a_{j, j} 对任意 1i,jn1 \le i, j \le n 成立。即 AA 的对角元全部相等,式子 a0E+a1A++amAma_0 E + a_1 A + \cdots + a_m A^m 所表示出的矩阵对角元也全部相等,显然无法表示出 Fn×n\mathbb F^{n \times n} 中的所有矩阵。

  6. 已知 A,BA, B 都是 nn 阶实矩阵,A2=E,B2=E,A+B=0A^2 = E, B^2 = E, |A| + |B| = 0,试证:A+B=0|A + B| = 0

    证明:显然 E=1|E| = 1,因此由方阵的行列式性质可知,A=B=±1|A| = |B| = \pm 1;又由于 A+B=0|A| + |B| = 0,因此 AB=1=AB=BA|A||B| = -1 = |AB| = |BA|
    A+B=AA+BB=A2B+AB2=EB+AE=B+A-|A + B| = |A||A + B||B| = |A^2B + AB^2| = |EB + AE| = |B + A|,即 A+B=0|A + B| = 0

  7. 证明:不存在 nn 阶方阵 A,BA, B,使得 ABBA=EAB - BA = E

    提示:考虑用矩阵迹的性质。

    证明:设 C=AB,D=BAC = AB, D = BA,则:

    ci,i=k=1nai,kbk,idi,i=k=1nbi,kak,itrC=i=1nci,i,trD=i=1ndi,itrCtrD=0=tr(CD)trE=n c_{i, i} = \sum_{k = 1}^n a_{i, k} b_{k, i} \\ d_{i, i} = \sum_{k = 1}^n b_{i, k} a_{k, i} \\ \mathrm {tr} \, C = \sum_{i = 1}^n c_{i, i}, \mathrm {tr} \, D = \sum_{i = 1}^n d_{i, i} \\ \mathrm {tr} \, C - \mathrm {tr} \, D = 0 = \mathrm {tr} (C - D) \not = \mathrm tr \, E = n

    因此不存在 nn 阶方阵 A,BA, B,使得 ABBA=EAB - BA = E

  8. 证明:任一个 nn 阶方阵都可以表示成一个对称阵与一个反对称阵之和。

    证明:设方阵为 AA,对称阵为 BB,反对称阵为 CC,则对于对角线上的元,取 bi,i=ai,i,ci,i=0b_{i, i} = a_{i, i}, c_{i, i} = 0 即可。
    iji \not = j 时,有如下方程组:

    {ai,j=bi,j+ci,jaj,i=bj,i+cj,i=bi,jci,j \begin {cases} a_{i, j} = b_{i, j} + c_{i, j} \\ a_{j, i} = b_{j, i} + c_{j, i} = b_{i, j} - c_{i, j} \end {cases}

    可解得 bi,j=ai,j+aj,i2,ci,j=ai,jaj,i2b_{i, j} = \dfrac {a_{i, j} + a_{j, i}} 2, c_{i, j} = \dfrac {a_{i, j} - a_{j, i}} 2。因此对于任意一个 nn 阶方阵,总能以此方法表示为一个对称阵和一个反对称阵之和。

  9. 证明:如果 AAnn 阶对称阵,BBnn 阶反对称阵,则 AB+BAAB + BA 是反对称阵。

    证明:设 C=AB,D=BAC = AB, D = BA,则:

    ci,j=k=1nai,kbk,jdi,j=k=1nbi,kak,jci,j+di,j=k=1nai,kbk,j+k=1nbi,kak,jcj,i+dj,i=k=1naj,kbk,i+k=1nbj,kak,i=k=1nai,kbk,jk=1nbi,kak,j=(ci,j+di,j) c_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j} \\ d_{i, j} = \sum_{k = 1}^n b_{i, k} a_{k, j} \\ c_{i, j} + d_{i, j} = \sum_{k = 1}^n a_{i, k} b_{k, j} + \sum_{k = 1}^n b_{i, k} a_{k, j} \\ c_{j, i} + d_{j, i} = \sum_{k = 1}^n a_{j, k} b_{k, i} + \sum_{k = 1}^n b_{j, k} a_{k, i} = - \sum_{k = 1}^n a_{i, k} b_{k, j} - \sum_{k = 1}^n b_{i, k} a_{k, j} = - (c_{i, j} + d_{i, j})

    因此 AB+BAAB + BA 是反对称阵。

  10. 证明:奇数阶反对称阵的行列式等于 00

    证明:设 AA 为奇数阶反对称阵,则有 A=AT-A = A^T,因此 detA=det(A)=detAT=(1)ndetA\det A = \det (-A) = \det A^T = (-1)^{n} \det A,其中 nnAA 的维数,是一个奇数,因此 detA=detA,detA=0\det A = - \det A, \det A = 0,得证。

  11. 证明:偶数阶反对称阵的所有元素加上同一个数,行列式的值不变。

    提示:先证明如下结论:若 nn 阶方阵 AA 所有元素都加上同一个数 bb 得到的矩阵 BB,则:

    B=A+bi,j=1nAi,j|B| = |A| + b \sum\limits_{i, j = 1}^n A_{i, j}

    其中 Ai,jA_{i, j}AA 中元素的代数余子式;然后证明偶数阶反对称阵的伴随矩阵 AA* 仍是反对称阵,说明 i,j=1nAi,j=0\sum\limits_{i, j = 1} ^n A_{i, j} = 0

    证明:设 nn 阶方阵 A=(a1,1a1,nan,1an,n)A = \begin {pmatrix} a_{1, 1} & \cdots & a_{1, n} \\ \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, n} \end {pmatrix},则:

    a1,1+ba1,n+ban,1+ban,n+b=1bb0a1,1+ba1,n+b0an,1+ban,n+b=1bb1a1,1a1,n1an,1an,n=A+bi,j=1nMi,j(1)2+i=A+bi,jnAi,jAi,j=(1)i+ja1,1a1,j1a1,j+1a1,nai1,1ai1,j1ai1,j+1ai1,nai+1,1ai+1,j1ai+1,j+1ai+1,nan,1an,j1an,j+1an,nAj,i=(1)i+ja1,1a1,i1a1,i+1a1,naj1,1aj1,i1aj1,i+1aj1,naj+1,1aj+1,i1aj+1,i+1aj+1,nan,1an,i1an,i+1an,n \begin {vmatrix} a_{1, 1} + b & \cdots & a_{1, n} + b \\ \vdots & \ddots & \vdots \\ a_{n, 1} + b & \cdots & a_{n, n} + b \end {vmatrix} = \begin {vmatrix} 1 & b & \cdots & b \\ 0 & a_{1, 1} + b & \cdots & a_{1, n} + b \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n, 1} + b & \cdots & a_{n, n} + b \end {vmatrix} = \begin {vmatrix} 1 & b & \cdots & b \\ -1 & a_{1, 1} & \cdots & a_{1, n} \\ \vdots & \vdots & \ddots & \vdots \\ -1 & a_{n, 1} & \cdots & a_{n, n} \end {vmatrix} = |A| + b \sum_{i, j = 1}^n M_{i, j} (-1)^{2 + i} = |A| + b \sum_{i, j}^n A_{i, j} \\ A_{i, j} = (-1)^{i + j} \begin {vmatrix} a_{1, 1} & \cdots & a_{1, j - 1} & a_{1, j + 1} & \cdots & a_{1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i - 1, 1} & \cdots & a_{i - 1, j - 1} & a_{i - 1, j + 1} & \cdots & a_{i - 1, n} \\ a_{i + 1, 1} & \cdots & a_{i + 1, j - 1} & a_{i + 1, j + 1} & \cdots & a_{i + 1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, j + 1} & \cdots & a_{n, n} \\ \end {vmatrix} \\ A_{j, i} = (-1)^{i + j} \begin {vmatrix} a_{1, 1} & \cdots & a_{1, i - 1} & a_{1, i + 1} & \cdots & a_{1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{j - 1, 1} & \cdots & a_{j - 1, i - 1} & a_{j - 1, i + 1} & \cdots & a_{j - 1, n} \\ a_{j + 1, 1} & \cdots & a_{j + 1, i - 1} & a_{j + 1, i + 1} & \cdots & a_{j + 1, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, i - 1} & a_{n, i + 1} & \cdots & a_{n, n} \\ \end {vmatrix}

    注意到 Ai,j=Aj,iTA_{i, j} = - A_{j, i}^T,因此 Ai,j=(1)n1Aj,i=Aj,i|A_{i, j}| = (-1)^{n - 1} |A_{j, i}| = - |A_{j, i}|,即偶数阶反对称阵的伴随矩阵 AA^* 仍是反对称阵,说明 i,j=1nAi,j=0\sum\limits_{i, j = 1}^n A_{i, j} = 0,从而证得 B=A|B| = |A|