# Taylor 多项式

定义 11:设函数 ff 在点 x0x_0 有直到 nn 阶的导数,令

Tn(f,x0;x)=k=0nf(k)(x0)k!(xx0)k=f(x0)+f(x0)(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)nT_n (f, x_0; x) = \sum_{k = 0}^n \frac {f^{(k)}(x_0)} {k!} (x - x_0)^k = f(x_0) + f'(x_0) (x - x_0) + \frac {f''(x_0)} {2!} (x - x_0)^2 + \cdots + \frac {f^{(n)}(x_0)} {n!} (x - x_0)^n

称为 ffx0x_0 处的 nn 阶 Taylor 多项式。

# Taylor 定理(Peano 余项)

定理 11:设函数 ff 在点 x0x_0 有直到 nn 阶的导数,则:

f(x)=Tn(f,x0;x)+o[(xx0)n],(xx0)f(x) = T_n (f, x_0; x) + o[(x - x_0)^n], (x \to x_0)

证明:令 Rn(x)=f(x)Tn(f,x0;x)R_n(x) = f(x) - T_n(f, x_0; x),则 Rn(x)R_n(x)x0x_0 附近 n1n - 1 可导,在 x0x_0nn 阶可导,且 Rn(x0)=Rn(x0)==Rn(n1)(x0)=Rn(n)(x0)=0R_n(x_0) = R_n'(x_0) = \cdots = R_n^{(n - 1)}(x_0) = R_n^{(n)}(x_0) = 0

对于 x>x0x > x_0x<x0x < x_0 类似)反复用柯西中值定理:

Rn(x)(xx0)n=Rn(x)Rn(x0)(xx0)n=Rn(ξ1)n(ξ1x0)n1,ξ1(x0,x)=Rn(ξ1)Rn(x0)n(ξ1x0)n1=Rn(ξ2)n(n1)(ξ2x0)n2,ξ2(x0,ξ1)==Rn(n1)(ξn1)n(n1)2(ξn1x0),ξn1(x0,ξn2)\begin {aligned} & \frac {R_n (x)} {(x - x_0)^n} = \frac {R_n (x) - R_n(x_0)} {(x - x_0)^n} = \frac {R_n'(\xi_1)} {n(\xi_1 - x_0)^{n - 1}}, \xi_1 \in (x_0, x) \\ = & \frac {R'_n(\xi_1) - R_n'(x_0)} {n(\xi_1 - x_0)^{n - 1}} = \frac {R_n''(\xi_2)} {n(n - 1)(\xi_2 - x_0)^{n - 2}}, \xi_2 \in (x_0, \xi_1) \\ = & \cdots = \frac {R_n^{(n - 1)}(\xi_{n - 1})} {n(n - 1)\cdots 2(\xi_{n - 1} - x_0)}, \xi_{n - 1} \in (x_0, \xi_{n - 2}) \end {aligned}

因此:

limxx0Rn(x)(xx0)n=limxx0Rn(n1)(ξn1)n(n1)2(ξn1x0)=1n!limxx0Rn(n1)(ξn1)Rn(n1)(x0)(ξn1x0)=Rn(n)(x0)=0\lim_{x \to x_0} \frac {R_n(x)} {(x - x_0)^n} = \lim_{x \to x_0} \frac {R_n^{(n - 1)}(\xi_{n - 1})} {n(n - 1) \cdots 2 (\xi_{n - 1} - x_0)} = \frac 1 {n!} \lim_{x \to x_0} \frac {R_n^{(n - 1)}(\xi_{n - 1}) - R_n^{(n - 1)}(x_0)} {(\xi_{n - 1} - x_0)} = R_n^{(n)}(x_0) = 0

常用展开式

  1. ex=1+x+x22!++xnn!+o(xn)e^x = 1 + x + \dfrac {x^2} {2!} + \cdots + \dfrac {x^n} {n!} + o(x^n)

  2. ln(1+x)=xx22+x33+(1)n1nxn+o(xn)\ln (1 + x) = x - \dfrac {x^2} {2} + \dfrac {x^3} {3} - \cdots + \dfrac {(-1)^{n - 1}} {n} x^n + o(x^n)

    ln(1x)=[x+x22+x33++xnn]+o(xn)\ln (1 - x) = - [x + \dfrac {x^2} {2} + \dfrac {x^3} {3} + \cdots + \dfrac {x^n} {n}] + o(x^n)

  3. sinx=xx33!+x55!x77!++(1)n1(2n1)!x2n1+o(x2n)\sin x = x - \dfrac {x^3} {3!} + \dfrac {x^5} {5!} - \dfrac {x^7} {7!} + \cdots + \dfrac {(-1)^{n - 1}} {(2n - 1)!} x^{2n - 1} + o(x^{2n})

  4. cosx=1x22!+x44!x66!++(1)n(2n)!x2n+o(x2n+1)\cos x = 1 - \dfrac {x^2} {2!} + \dfrac {x^4} {4!} - \dfrac {x^6} {6!} + \cdots + \dfrac {(-1)^n} {(2n)!} x^{2n} + o(x^{2n + 1})

    eix=1+ix+(ix)22!++(ix)nn!=o(xn)e^{ix} = 1 + ix + \dfrac {(ix)^2} {2!} + \cdots + \dfrac {(ix)^n} {n!} = o(x^n),得欧拉公式:

    eix=cosx+isinxe^{ix} = \cos x + i \sin x

  5. 广义二项式:

    f(x)=(1+x)λ,(x>1)=k=0nλ(λ1)(λk+1)k!xk+o(xn)=k=0nCλkxk+o(xn)\begin {aligned} f(x) & = (1 + x)^\lambda, (x > -1) \\ & = \sum_{k = 0}^n \frac {\lambda (\lambda - 1) \cdots (\lambda - k + 1)} {k!} x^k + o(x^n) \\ & = \sum_{k = 0}^n C_\lambda^k x^k + o(x^n) \end {aligned}

    特例

    11+x=1x+x2x3++(1)nxn+o(xn)=k=0n(1)kxk+o(xn)\frac 1 {1 + x} = 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + o(x^n) = \sum_{k = 0}^n (-1)^k x^k + o(x^n)

说明

  1. Taylor 公式所做的事情就是在 x0x_0 的额小邻域内,用 Taylor 多项式 Tn(x)T_n(x) 逼近 f(x)f(x)

  2. Rn(x)=f(x)Tn(x)R_n(x) = f(x) - T_n(x),我们称之为余项。定理即 Rn(x)=o[(xx0)n]R_n(x) = o[(x - x_0)^n],我们称之为 Peano 余项。它描述的是 Rn(x)R_n(x)x0x_0 附近的性质。

  3. x0=0x_0 = 0 时,称为 Maclaurin(麦克劳林)公式:

    f(x)=f(0)+f(0)x+f(0)2!x2++f(n)(0)n!xn+o(xn)=k=0nf(k)(0)k!xk+o(xn)f(x) = f(0) + f'(0) x + \frac {f''(0)} {2!} x^2 + \cdots + \frac {f^{(n)}(0)} {n!} x^n + o(x^n) = \sum_{k = 0}^n \frac {f^{(k)}(0)} {k!} x^k + o(x^n)

# 求函数的 Taylor 展式

1.1.y=arctanxy = \arctan x 的麦克劳林展开式。

:直接法,关键是求出 f(n)(0)f^{(n)}(0),先求一阶导:f(x)=11+x2,f(0)=1f'(x) = \dfrac 1 {1 + x^2}, f'(0) = 1,则得到:

(1+x2)f(x)=1(1 + x^2) f'(x) = 1

两边求 nn 阶导数:

(1+x2)f(n+1)(x)+n2xf(n)(x)+n(n1)22f(n1)(x)=0(1 + x^2) f^{(n + 1)}(x) + n \cdot 2xf^{(n)}(x) + \frac {n (n - 1)} 2 \cdot 2 f^{(n - 1)}(x) = 0

x=0,f(n+1)(0)=n(n1)f(n1)(0)x = 0, f^{(n + 1)}(0) = -n (n - 1) f^{(n - 1)}(0),则:

f(n)(0)={0,n=2k(1)k(2k)!,n=2k+1f^{(n)}(0) = \begin {cases} 0, & n = 2k \\ (-1)^k (2k)!, & n = 2k + 1 \end {cases}

因此 arctanx=xx33+x55x77++(1)n(2n+1)x2n+1+o(x2n+2)\arctan x = x - \dfrac {x^3} 3 + \dfrac {x^5} 5 - \dfrac {x^7} 7 + \cdots + \dfrac {(-1)^n} {(2n + 1)} x^{2n + 1} + o(x^{2n + 2})

无穷小量的运算法则o(xn)o(x^n) 是一类变量集合,满足:αo(xn)\forall \, \alpha \in o(x^n)limx0αxn=0\lim\limits_{x \to 0} \dfrac \alpha {x^n} = 0。当 x0x \to 0 时:

  1. o(xm)o(xn),mn>0o(x^m) \sub o(x^n), m \ge n > 0

  2. o(xm)±o(xn)o(xn),mn>0o(x^m) \pm o(x^n) \sub o(x^n), m \ge n > 0

  3. o(xm)o(xn)o(xm+n),m,n>0o(x^m) o(x^n) \sub o(x^{m + n}), m, n > 0

  4. Co(xn)o(xn),C0C \cdot o(x^n) \sub o(x^n), C \not = 0 为常数;

  5. xno(xm)o(xm+n),m,n>0x^n \cdot o(x^m) \sub o(x^{m + n}), m, n > 0

  6. 1xno(xm)o(xmn),mn>0\dfrac 1 {x^n} \cdot o(x^m) \sub o(x^{m - n}), m \ge n > 0

  7. o(o(xn))o(xn)o(o(x^n)) \sub o(x^n)

2.2. f(x)=lnsinxxf(x) = \ln \dfrac {\sin x} {x} 将此函数展开到 66 次。

f(x)=lnsinxx=ln(xx33!+x55!x77!+o(x7)x)=ln[1+(x23!+x45!x67!+o(x6))]=x36+x4120x65040+o(x6)12(x26+x4120x65040+o(x6))2+13(x26+x4120x65040+o(x6))3+o(x6)=x26x4180x62835+o(x6)\begin {aligned} f(x) &= \ln \frac {\sin x} x = \ln \left( \frac {x - \dfrac {x^3} {3!} + \dfrac {x^5} {5!} - \dfrac {x^7} {7!} + o(x^7)} x \right) = \ln \left[ 1 + \left( - \frac {x^2} {3!} + \frac {x^4} {5!} - \frac {x^6} {7!} + o(x^6) \right) \right] \\ &= - \frac {x^3} 6 + \frac {x^4} {120} - \frac {x^6} {5040} + o(x^6) - \frac 1 2 \left( - \frac {x^2} 6 + \frac {x^4} {120} - \frac {x^6} {5040} + o(x^6) \right)^2 + \frac 1 3 (- \frac {x^2} 6 + \frac {x^4} {120} - \frac {x^6} {5040} + o(x^6))^3 + o(x^6) \\ &= - \frac {x^2} 6 - \frac {x^4} {180} - \frac {x^6} {2835} + o(x^6) \end {aligned}

3.3. 将函数 f(x)=lnxf(x) = \ln xx=2x = 2 进行 Taylor 公式展开。

f(x)=ln(2+x2)=ln2+ln(1+x22)=ln2+x2212(x22)2++(1)n1n(x22)n+o((x22)n)\begin {aligned} f(x) &= \ln (2 + x - 2) = \ln 2 + \ln (1 + \frac {x - 2} 2) \\ &= \ln 2 + \frac {x - 2} 2 - \frac 1 2 \left( \frac {x - 2} 2 \right)^2 + \cdots + \frac {(-1)^{n - 1}} n \left( \frac {x - 2} 2 \right)^n + o \left( \left( \frac {x - 2} 2 \right)^n \right) \end {aligned}

# Peano 余项 Taylor 公式应用

# 极值问题

定理 22:设 ffx0x_0 处有 kk 阶导数,且 f(x0)=f(x0)==f(k1)(x0)=0,f(k)(x0)0f'(x_0) = f''(x_0) = \cdots = f^{(k - 1)}(x_0) = 0, f^{(k)}(x_0) \not = 0,则:

  1. kk 为奇数时,x0x_0 不是极值点

  2. kk 为偶数时,x0x_0 是极值点,且:

    f(k)(x0)>0f^{(k)}(x_0) > 0x0x_0 为极小值点;

    f(k)(x0)<0f^{(k)}(x_0) < 0x0x_0 为极大值点。

其原理是:

f(x)f(x0)=f(k)(x0)k!(xx0)k+o((xx0)k)(xx0)f(x) - f(x_0) = \frac {f^{(k)}(x_0)} {k!} (x - x_0)^k + o((x - x_0)^k) (x \to x_0)

# 求极限

4.4. 求极限:limx0cosxex22x4\lim\limits_{x \to 0} \dfrac {\cos x - e^{-\frac {x^{2}} 2}} {x^4}

cosx=1x22!+x44!+o(x4)ex22=1x22+12!(x22)2+o[(x22)2]=1x22+x48+o(x4)原式=limx0x412+o(x4)x4=112\cos x = 1 - \frac {x^2} {2!} + \frac {x^4} {4!} + o(x^4) \\ e^{- \frac {x^2} 2} = 1 - \frac {x^2} 2 + \frac 1 {2!} \left( - \frac {x^2} 2 \right)^2 + o \left[ \left( - \frac {x^2} 2 \right)^2 \right] = 1 - \frac {x^2} 2 + \frac {x^4} 8 + o(x^4) \\ 原式 = \lim_{x \to 0} \frac {- \dfrac {x^4} {12} + o(x^4)} {x^4} = - \frac 1 {12}

5.5. 求极限:limx0sinxarctanxtanxsinx\lim\limits_{x \to 0} \dfrac {\sin x - \arctan x} {\tan x - \sin x}

:由于 tanxsinx=tanx(1cosx)\tan x - \sin x = \tan x (1 - \cos x),因此 x0x \to 0 时,tanxsinxx32\tan x - \sin x \sim \dfrac {x^3} 2

又因为 sinx=xx33!+o(x3),arctanx=xx33+o(x3)\sin x = x - \dfrac {x^3} {3!} + o(x^3), \arctan x = x - \dfrac {x^3} 3 + o(x^3),所以原式 =limx016x3+o(x3)x32=13= \lim\limits_{x \to 0} \dfrac {\frac 1 6 x^3 + o(x^3)} {\frac {x^3} 2} = \dfrac 1 3

# Taylor 定理(Lagrange 余项)

定理 33:设 f(x)f(x)[a,b][a, b] 上有 nn 阶连续导数,在 (a,b)(a, b) 内有 n+1n + 1 阶导数,则对 x0,x[a,b]\forall \, x_0, x \in [a, b],有:

f(x)=Tn(f,x0;x)+Rn(x)f(x) = T_n (f, x_0; x) + R_n(x)

其中 Rn(x)=f(n+1)(ξ)(n+1)!(xx0)n+1R_n(x) = \dfrac {f^{(n + 1)}(\xi)} {(n + 1)!} (x - x_0)^{n + 1}。此即 Lagrange 余项。

证明:将 Tn(f,x0;x)T_n(f, x_0; x) 中的 xx 看成自变量,令 h(x)=Tn(f,x0;x)h(x) = T_n(f, x_0; x)。则有 h(i)(x0)=f(i)(x0),i=0,1,,nh^{(i)}(x_0) = f^{(i)}(x_0), i = 0, 1, \cdots, n 成立。因此:

Rn(i)(x0)=f(i)(x0)h(i)(x0)=0,i=0,1,,nR_n^{(i)} (x_0) = f^{(i)}(x_0) - h^{(i)}(x_0) = 0, i = 0, 1, \cdots, n

Rn(n+1)(x)=f(n+1)(x)h(n+1)(x)=f(n+1)(x)R_n^{(n + 1)}(x) = f^{(n + 1)}(x) - h^{(n + 1)}(x) = f^{(n + 1)}(x)

gn(x)=(xx0)n+1g_n(x) = (x - x_0)^{n + 1},则易见:

gn(i)(x0)=0,i=0,1,,ngn(n+1)(x)=(n+1)!g_n^{(i)}(x_0) = 0, i = 0, 1, \cdots, n \\ g_n^{(n + 1)}(x) = (n + 1)!

Rn(x)R_n(x)gn(x)g_n(x) 运用柯西中值定理,可得:

Rn(x)gn(x)=Rn(x)Rn(x0)gn(x)gn(x0)=Rn(ξ1)gn(ξ1)=Rn(ξ1)Rn(x0)gn(ξ1)gn(x0)=Rn(ξ2)gn(ξ2)==Rn(n)(ξn)gn(n)(ξn)=Rn(n)(ξn)Rn(n)(x0)gn(n)(ξn)gn(n)(x0)=Rn(n+1)(ξ)gn(n+1)(ξ)=f(n+1)(ξ)(n+1)!\begin {aligned} \frac {R_n (x)} {g_n (x)} & = \frac {R_n (x) - R_n (x_0)} {g_n (x) - g_n (x_0)} = \frac {R'_n (\xi_1)} {g'_n(\xi_1)} \\ & = \frac {R'_n(\xi_1) - R'_n(x_0)} {g'_n(\xi_1) - g'_n(x_0)} = \frac {R''_n(\xi_2)} {g''_n(\xi_2)} = \cdots = \frac {R_n^{(n)}(\xi_n)} {g_n^{(n)}(\xi_n)} \\ &= \frac {R_n^{(n)}(\xi_n) - R_n^{(n)}(x_0)} {g_n^{(n)}(\xi_n) - g_n^{(n)}(x_0)} = \frac {R_n^{(n + 1)}(\xi)} {g_n^{(n + 1)}(\xi)} = \frac {f^{(n + 1)}(\xi)} {(n + 1)!} \end {aligned}

因此 Rn(x)=f(n+1)(ξ)(n+1)!(xx0)n+1R_n(x) = \dfrac {f^{(n + 1)}(\xi)} {(n + 1)!} (x - x_0)^{n + 1}

  1. x0=0x_0 = 0 时的 Taylor 公式称为 Maclaurin 公式;

  2. n=0n = 0 时,Taylor 公式变成 Lagrange 中值公式:

    f(x)=f(x0)+f(ξ)(xx0),ξ(x0,x)f(x) = f(x_0) + f'(\xi) (x - x_0), \xi \in (x_0, x)

  3. ξ\xi 也可表示为 x0+θ(xx0),0<θ<1x_0 + \theta (x - x_0), 0 < \theta < 1

  4. Peano 余项对误差进行定性的估计,Lagrange 余项对误差有了更加准确的定量的描述。

常用展开式的 Lagrange 余项

  1. exe^xRn(x)=eθx(n+1)!xn+1,0<θ<1R_n(x) = \dfrac {e^{\theta x}} {(n + 1)!} x^{n + 1}, 0 < \theta < 1

  2. sinx\sin xR2n(x)=(1)ncosθx(2n+1)!x2n+1,0<θ<1R_{2n} (x) = (-1)^n \dfrac {\cos \theta x} {(2n + 1)!} x^{2n + 1}, 0 < \theta < 1

  3. cosx\cos xR2n+1(x)=(1)n+1cosθx(2n+2)!x2n+2,0<θ<1R_{2n + 1} (x) = (-1)^{n + 1} \dfrac {\cos \theta x} {(2n + 2)!} x^{2n + 2}, 0 < \theta < 1

  4. ln(1+x)\ln (1 + x)Rn(x)=(1)nn+1xn+1(1+θx)n+1,0<θ<1R_n (x) = \dfrac {(-1)^n} {n + 1} \dfrac {x^{n + 1}} {(1 + \theta x)^{n + 1}}, 0 < \theta < 1

  5. (1+x)λ(1 + x)^\lambdaRn(x)=Cλn+1(1+θx)λn1xn+1,0<θ<1R_n (x) = C_\lambda^{n + 1} (1 + \theta x)^{\lambda - n - 1} x^{n + 1}, 0 < \theta < 1

6.6. 证明当 x>0x > 0 时,

xx22+x33x44<ln(1+x)<xx22+x33x - \dfrac {x^2} 2 + \dfrac {x^3} 3 - \dfrac {x^4} 4 < \ln (1 + x) < x - \dfrac {x^2} 2 + \dfrac {x^3} 3

证明

ln(1+x)=xx22+x33x44(1+ξ1)4,0<ξ1<x,xx22+x33x44<ln(1+x)<xx22+x33\ln (1 + x) = x - \frac {x^2} 2 + \frac {x^3} 3 - \frac {x^4} {4 (1 + \xi_1)^4}, 0 < \xi_1 < x, \\ x - \frac {x^2} 2 + \frac {x^3} 3 - \frac {x^4} 4 < \ln (1 + x) < x - \frac {x^2} 2 + \frac {x^3} 3

7.7. ff[a,b][a, b] 二阶可导,f(a)=f(b)=0f'(a) = f'(b) = 0,求证:c(a,b)\exist \, c \in (a, b),使得:

f(c)4(ba)2f(b)f(a)|f''(c)| \ge \frac 4 {(b - a)^2} |f(b) - f(a)|

即:f(b)f(a)(ba)24f(c)|f(b) - f(a)| \le \dfrac {(b - a)^2} 4 |f''(c)|

证明f(x)f(x)aa 点,bb 点的一阶 Taylor 公式为:

f(x)=f(a)+f(a)(xa)+f(ξ)2(xa)2=f(a)+f(ξ)2(xa)2,ξ(a,x)f(x)=f(b)+f(b)(xb)+f(η)2(xb)2=f(b)+f(η)2(xb)2,η(x,b)\begin {aligned} f(x) &= f(a) + f'(a) (x - a) + \frac {f''(\xi)} 2 (x - a)^2 \\ &= f(a) + \frac {f''(\xi)} 2 (x - a)^2, \xi \in (a, x) \end {aligned} \\ \begin {aligned} f(x) &= f(b) + f'(b) (x - b) + \frac {f''(\eta)} 2 (x - b)^2 \\ &= f(b) + \frac {f''(\eta)} 2 (x - b)^2, \eta \in (x, b) \end {aligned}

x=a+b2x = \dfrac {a + b} 2,得:

f(a+b2)=f(a)+f(c1)2(ba2)2f(\frac {a + b} 2) = f(a) + \frac {f''(c_1)} 2 \left( \frac {b - a} 2 \right)^2

类似可得:

f(a+b2)=f(b)+f(c2)2(ba2)2f(\frac {a + b} 2) = f(b) + \frac {f''(c_2)} 2 \left( \frac {b - a} 2 \right)^2

两式相减得:

f(b)f(a)=(ba)28(f(c1)f(c2))f(b) - f(a) = \frac {(b - a)^2} 8 (f''(c_1) - f''(c_2))

因此 f(b)f(a)(ba)28(f(c1)+f(c2))|f(b) - f(a)| \le \dfrac {(b - a)^2} {8} (|f''(c_1)| + |f''(c_2)|)。取 c1,c2c_1, c_2 中使 f(c1),f(c2)|f''(c_1)|, |f''(c_2)| 大者为 cc 即可。

8.8.(a,b)(a, b)f(x)>0f''(x) > 0,求证:x1,x2(a,b)\forall \, x_1, x_2 \in (a, b),都有:

f(x1+x22)<12[f(x1)+f(x2)]f \left( \dfrac {x_1 + x_2} 2 \right) < \frac 1 2 [f(x_1) + f(x_2)]

证明:在 x0=x1+x22x_0 = \dfrac {x_1 + x_2} 2 处 Taylor 展开:

f(x)=f(x1+x22)+f(x1+x22)(xx1+x22)+f(ξ)2(xx1+x22)2,ξ(x,x1+x22)>f(x1+x22)+f(x1+x22)(xx1+x22)\begin {aligned} f(x) & = f \left( \frac {x_1 + x_2} 2 \right) + f' \left( \frac {x_1 + x_2} 2 \right) \left( x - \frac {x_1 + x_2} 2 \right) + \frac {f''(\xi)} 2 \left( x - \frac {x_1 + x_2} 2 \right)^2, \xi \in \left( x, \frac {x_1 + x_2} 2 \right) \\ & > f \left( \frac {x_1 + x_2} 2 \right) + f' \left( \frac {x_1 + x_2} 2 \right) \left( x - \frac {x_1 + x_2} 2 \right) \end {aligned}

xx 分别代入为 x1,x2x_1, x_2,可得:

f(x1)>f(x1+x22)+f(x1+x22)x1x22f(x2)>f(x1+x22)+f(x1+x22)x2x12f(x_1) > f \left( \frac {x_1 + x_2} 2 \right) + f' \left( \frac {x_1 + x_2} 2 \right) \frac {x_1 - x_2} 2 \\ f(x_2) > f \left( \frac {x_1 + x_2} 2 \right) + f' \left( \frac {x_1 + x_2} 2 \right) \frac {x_2 - x_1} 2

两式相加即得:

f(x1)+f(x2)>2f(x1+x22)f(x_1) + f(x_2) > 2 f \left( \frac {x_1 + x_2} 2 \right)

9.9. ff[0,1][0, 1] 内二阶可导,f(0)=f(1)=0f(0) = f(1) = 0minx[0,1]f(x)=1\min\limits_{x \in [0, 1]} f(x) = -1,求证:maxx[0,1]f(x)8\max\limits_{x \in [0, 1]} f''(x) \ge 8

证明:极小值在 (0,1)(0, 1) 内取得,f(c)=1f(c) = -1 最小,f(c)=0f'(c) = 0,则 f(x)f(x)cc 点的一阶 Taylor 公式为:

f(x)=f(c)+f(ξ)2(xc)2,ξ(x,c)f(x) = f(c) + \frac {f''(\xi)} 2 (x - c)^2, \xi \in (x, c)

分别取 x=0,x=1x = 0, x = 1,得:

f(0)=f(c)+f(ξ1)2(c)2=0,ξ1(0,c)f(1)=f(c)+f(ξ2)2(1c)2=0,ξ2(c,1)f(0) = f(c) + \frac {f''(\xi_1)} 2 (-c)^2 = 0, \xi_1 \in (0, c) \\ f(1) = f(c) + \frac {f''(\xi_2)} 2 (1 - c)^2 = 0, \xi_2 \in (c, 1) \\

f(ξ1)=2c2,f(ξ2)=2(1c)2f''(\xi_1) = \dfrac 2 {c^2}, f''(\xi_2) = \dfrac 2 {(1 - c)^2},当 c12c \le \dfrac 1 2 时,f(ξ1)8f''(\xi_1) \ge 8;当 c>12c > \dfrac 1 2 时,f(ξ2)8f''(\xi_2) \ge 8

所以 maxx[0,1]f(x)8\max\limits_{x \in [0, 1]} f''(x) \ge 8

10.10. ff[0,1][0, 1] 内二阶可导,且 f(x)a,f(x)b|f(x)| \le a, |f''(x)| \le b,求证:f(x)2a+b2|f'(x)| \le 2a + \dfrac b 2

证明:函数在 xx 点的一阶 Taylor 公式为:

f(t)=f(x)+f(x)(tx)+f(ξ)2(tx)2f(t) = f(x) + f'(x) (t - x) + \frac {f''(\xi)} 2 (t - x)^2

其中 ξ\xi 介于 t,xt, x 之间。分别代入 0,10, 1 点的值,可得:

f(0)=f(x)+f(x)(x)+f(ξ1)2x2,ξ1(0,x)f(1)=f(x)+f(x)(1x)+f(ξ2)2(1x)2,ξ2(x,1)f(1)f(0)=f(x)+12(1x)2f(ξ2)+12x2f(ξ1)f(x)f(1)+f(0)+12(1x)2f(ξ2)+12x2f(ξ1)2a+12[(1x)2+x2]b2a+b2f(0) = f(x) + f'(x) (-x) + \frac {f''(\xi_1)} 2 x^2, \xi_1 \in (0, x) \\ f(1) = f(x) + f'(x) (1 - x) + \frac {f''(\xi_2)} 2 (1 - x)^2, \xi_2 \in (x, 1) \\ f(1) - f(0) = f'(x) + \frac 1 2 (1 - x)^2 f''(\xi_2) + \frac 1 2 x^2 f''(\xi_1) \\ \begin {aligned} |f'(x)| & \le |f(1)| + |f(0)| + \frac 1 2 (1 - x)^2 |f''(\xi_2)| + \frac 1 2 x^2 |f''(\xi_1)| \\ & \le 2a + \frac 1 2 [(1 - x)^2 + x^2] b \\ & \le 2a + \frac b 2 \end {aligned}

总结:Taylor 公式证明题目时关键在点 x0,xx_0, x 的选取。点多选端点、中点、驻点、极值点等。

# 习题

  1. 将多项式 1+3x+5x22x3+x41 + 3x + 5x^2 - 2x^3 + x^4x1x - 1 幂展开。

    解:(x1)4+2(x1)3+5(x1)2+11(x1)+8(x - 1)^4 + 2 (x - 1)^3 + 5 (x - 1)^2 + 11 (x - 1) + 8

  2. 写出下列函数的带 Peano 余项的 Maclaurin 公式:

    (1) eax(a0)e^{ax} (a \not = 0)

    (2) ln(1x)\ln (1 - x)

    (3) x3+2x+1x+1\dfrac {x^3 + 2x + 1} {x + 1}

    (1) 解:eax=1+ax+a2x22!+a3x33!++anxnn!+o(xn)e^{ax} = 1 + ax + \dfrac {a^2 x^2} {2!} + \dfrac {a^3 x^3} {3!} + \cdots + \dfrac {a^n x^n} {n!} + o(x^{n})

    (2) 解:ln(1x)=xx22x33xnn+o(xn)\ln (1 - x) = -x - \dfrac {x^2} 2 - \dfrac {x^3} 3 - \cdots - \dfrac {x^n} n + o(x^n)

    (3) 解:

    11+x=1x+x2x3++(1)nxn+o(xn)x3+2x+1x+1=(x3+2x+1)(1x+x2x3++(1)nxn+o(xn))=1+xx2+2x32x4++(1)n12xn+o(xn) \dfrac 1 {1 + x} = 1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + o(x^n) \\ \begin {aligned} \frac {x^3 + 2x + 1} {x + 1} &= (x^3 + 2x + 1) (1 - x + x^2 - x^3 + \cdots + (-1)^n x^n + o(x^n)) \\ &= 1 + x - x^2 + 2x^3 - 2x^4 + \cdots + (-1)^{n - 1} \cdot 2x^n + o(x^n) \end {aligned}

  3. 求出 arcsinx\arcsin x 的带 Peano 余项的 Maclaurin 公式。

    解:令 f(x)=arcsinxf(x) = \arcsin x,则:

    f(x)=11x2f(x)=x(1x2)32=x1x2f(x)(1x2)f(x)xf(x)=0 f'(x) = \frac 1 {\sqrt {1 - x^2}} \\ f''(x) = \frac {x} {(1 - x^2)^{\frac 3 2}} = \frac {x} {1 - x^2} f'(x) \\ (1 - x^2) f''(x) - xf'(x) = 0

    由莱布尼茨公式对左右两边求 n2n - 2 次导得:

    (1x2)f(n)(x)+(2n+3)xf(n1)(x)(n2)2f(n2)(x)=0 (1 - x^2) f^{(n)}(x) + (-2n + 3) x f^{(n - 1)} (x) - (n - 2)^2 f^{(n - 2)}(x) = 0

    x=0x = 0 代入得:

    f(n)(0)=(n2)2f(n2)(x) f^{(n)}(0) = (n - 2)^2 f^{(n - 2)}(x)

    由于 f(0)=0,f(1)=1f(0) = 0, f(1) = 1,因此:

    f(n)(0)={0n为偶数1n=1[(n2)!!]2n为大于1的奇数 f^{(n)}(0) = \begin {cases} 0 & n 为偶数 \\ 1 & n = 1 \\ [(n - 2)!!]^2 & n 为大于 1 的奇数 \end {cases}

    则带 Peano 余项的 Maclaurin 公式为:

    arcsinx=x+x33!+3!!x554!!++(2n1)!!x2n+1(2n+1)(2n)!!+o(x2n+2) \arcsin x = x + \frac {x^3} {3!} + \frac {3!! x^5} {5 \cdot 4!!} + \cdots + \frac {(2n - 1)!! x^{2n + 1}} {(2n + 1) (2n)!!} + o(x^{2n + 2})

  4. 按指定要求写出下列函数带 Peano 余项的 Maclaurin 公式:

    (1) xsinx\dfrac x {\sin x} 到含 o(x4)o(x^4) 的项;

    (2) exx2e^{x - x^2} 到含 o(x4)o(x^4) 的项;

    (3) sinx33\sqrt [3] {\sin x^3} 到含 x13x^{13} 的项。

    (1) 解:

    sinxx=1x23!+x45!+o(x5)xsinx=11x23!+x45!+o(x5)=1+(x23!x45!+o(x5))+(x23!x45!+o(x5))2+o(x4)=1+x26+7x4360+o(x4) \frac {\sin x} x = 1 - \frac {x^2} {3!} + \frac {x^4} {5!} + o(x^5) \\ \begin {aligned} \frac x {\sin x} & = \frac {1} {1 - \dfrac {x^2} {3!} + \dfrac {x^4} {5!} + o(x^5)} \\ & = 1 + \left( \frac {x^2} {3!} - \frac {x^4} {5!} + o(x^5) \right) + \left( \frac {x^2} {3!} - \frac {x^4} {5!} + o(x^5) \right)^2 + o(x^4) \\ & = 1 + \frac {x^2} 6 + \frac {7x^4} {360} + o(x^4) \end {aligned}

    (2) 解:

    exx2=1+(xx2)+(xx2)22!+(xx2)33!+(xx2)44!+(xx2)55!+o(x5)=1+xx225x36+x424+41x5120+o(x5) \begin {aligned} e^{x - x^2} & = 1 + (x - x^2) + \frac {(x - x^2)^2} {2!} + \frac {(x - x^2)^3} {3!} + \frac {(x - x^2)^4} {4!} + \frac {(x - x^2)^5} {5!} + o(x^5) \\ & = 1 + x - \frac {x^2} 2 - \frac {5 x^3} {6} + \frac {x^4} {24} + \frac {41 x^5} {120} + o(x^5) \end {aligned}

    (3) 解:

    sinx3=x3x93!+x155!x217!+x279!x3311!+x3913!+o(x39)=x3(1x63!+x125!x187!+x249!x3011!+x3613!+o(x36))(1+x)13=1+x3+13(23)2!x2+13(23)(53)3!x3+o(x3)=1+x3x29+59x3+o(x3)sinx33=x1+(x66+x12120+o(x12))3=x(1+(x66+x12120+o(x12))3(x66+x12120+o(x12))29+o(x12))=xx718x133240+o(x13) \begin {aligned} \sin x^3 & = x^3 - \frac {x^9} {3!} + \frac {x^{15}} {5!} - \frac {x^{21}} {7!} + \frac {x^{27}} {9!} - \frac {x^{33}} {11!} + \frac {x^{39}} {13!} + o(x^{39}) \\ & = x^3 (1 - \frac {x^6} {3!} + \frac {x^{12}} {5!} - \frac {x^{18}} {7!} + \frac {x^{24}} {9!} - \frac {x^{30}} {11!} + \frac {x^{36}} {13!} + o(x^{36})) \end {aligned} \\ \begin {aligned} (1 + x)^{\frac 1 3} & = 1 + \frac x 3 + \frac {\dfrac 1 3 \left( - \dfrac 2 3 \right)} {2!} x^2 + \frac {\dfrac 1 3 \left( - \dfrac 2 3 \right) \left( - \dfrac 5 3 \right)} {3!} x^3 + o(x^3) \\ & = 1 + \frac x 3 - \frac {x^2} 9 + \frac 5 9 x^3 + o(x_3) \end {aligned} \\ \begin {aligned} \sqrt [3] {\sin x^3} & = x \sqrt [3] {1 + \left( - \frac {x^6} {6} + \frac {x^{12}} {120} + o(x^{12}) \right)} \\ & = x \left( 1 + \frac {\left( - \dfrac {x^6} 6 + \dfrac {x^{12}} {120} + o(x^{12}) \right)} 3 - \dfrac {\left( - \dfrac {x^6} 6 + \dfrac {x^{12}} {120} + o(x^{12}) \right)^2} {9} + o(x^{12}) \right) \\ & = x - \frac {x^7} {18} - \frac {x^{13}} {3240} + o(x^{13}) \end {aligned}

  5. 写出下列函数在指定点的带 Peano 余项的 Taylor 公式:

    f(x)=sinx,x0=1f(x) = \sin x, x_0 = 1

    解:由 Taylor 公式可得:

    f(x)=sin1+cos1(x1)sin12!(x1)2cos13!(x1)3++sin1(4n)!(x1)4n+cos1(4n+1)!(x1)4n+1sin1(4n+2)!(x1)4n+2cos1(4n+3)!(x1)4n+3+o[(x1)4n+3] f(x) = \sin 1 + \cos 1 (x - 1) - \frac {\sin 1} {2!} (x - 1)^2 - \frac {\cos 1} {3!} (x - 1)^3 + \cdots + \frac {\sin 1} {(4n)!} (x - 1)^{4n} + \frac {\cos 1} {(4n + 1)!} (x - 1)^{4n + 1} - \frac {\sin 1} {(4n + 2)!} (x - 1)^{4n + 2} - \frac {\cos 1} {(4n + 3)!} (x - 1)^{4n + 3} + o[(x - 1)^{4n + 3}]

  6. 利用 Taylor 公式,求下列极限:

    (1) limx0ex31x3sin62x\lim\limits_{x \to 0} \dfrac {e^{x^3} - 1 - x^3} {\sin^6 2x}

    (2) limx+x32[x+1+x12x]\lim\limits_{x \to + \infty} x^{\frac 3 2} [\sqrt {x + 1} + \sqrt {x - 1} - 2 \sqrt x]

    (3) limx01+2sinxex+x2x3\lim\limits_{x \to 0} \dfrac {\sqrt {1 + 2 \sin x} - e^x + x^2} {x^3}

    (1) 解:

    limx0ex31x3sin62x=limx01+x3+x62+o(x6)1x3(2x)6=limx0x627x6=1128 \begin {aligned} \lim\limits_{x \to 0} \dfrac {e^{x^3} - 1 - x^3} {\sin^6 2x} & = \lim_{x \to 0} \frac {1 + x^3 + \dfrac {x^6} 2 + o(x^6) - 1 - x^3} {(2x)^6} \\ & = \lim_{x \to 0} \frac {x^6} {2^7 x^6} = \frac 1 {128} \end {aligned}

    (2) 解:令 u=x1u = x^{-1},则 u0+u \to 0^+;令 t=ut = \sqrt u,则 t0+t \to 0^+

    limx+x32[x+1+x12x]=limu0+1+u+1u2u2=limt0+1+t2+1t22t3=limt0+(1+t22t48+o(t4))+(1t22t48+o(t4))2t4=limt0+t44t4=14 \begin {aligned} \lim\limits_{x \to + \infty} x^{\frac 3 2} [\sqrt {x + 1} + \sqrt {x - 1} - 2 \sqrt x] &= \lim_{u \to 0^+} \frac { \sqrt {1 + u} + \sqrt {1 - u} - 2} {u^2} \\ & = \lim_{t \to 0^+} \frac {\sqrt {1 + t^2} + \sqrt {1 - t^2} - 2} {t^3} \\ & = \lim_{t \to 0^+} \frac {\left( 1 + \dfrac {t^2} 2 - \dfrac {t^4} 8 + o(t^4) \right) + \left( 1 - \dfrac {t^2} 2 - \dfrac {t^4} 8 + o(t^4) \right) - 2} {t^4} \\ & = \lim_{t \to 0^+} \frac {- \dfrac {t^4} 4} {t^4} = - \frac 1 4 \end {aligned}

    (3) 解:

    limx01+2sinxex+x2x3=limx0(1+sinxsin2x2+sin3x2+o(sin3x))(1+x+x22+x36+o(x3))+x2x3=limx0(xx36)(xx36)22+(xx36)32x+x22x36+o(x3)x3=x36+o(x3)x3=16 \begin {aligned} \lim\limits_{x \to 0} \dfrac {\sqrt {1 + 2 \sin x} - e^x + x^2} {x^3} & = \lim_{x \to 0} \frac {\left( 1 + \sin x - \dfrac {\sin^2 x} 2 + \dfrac {\sin^3 x} 2 + o(\sin^3 x) \right) - \left( 1 + x + \dfrac {x^2} 2 + \dfrac {x^3} 6 + o(x^3) \right) + x^2} {x^3} \\ & = \lim_{x \to 0} \frac {\left( x - \dfrac {x^3} 6 \right) - \dfrac {\left( x - \dfrac {x^3} 6 \right)^2} 2 + \dfrac {\left( x - \dfrac {x^3} 6 \right)^3} 2 - x + \dfrac {x^2} 2 - \dfrac {x^3} 6 + o(x^3)} {x^3} \\ & = \dfrac {\dfrac {x^3} 6 + o(x^3)} {x^3} = \frac 1 6 \end {aligned}

  7. 利用 Taylor 公式,求下列数列极限:

    limnn2ln(nsin1n)\lim_{n \to \infty} n^2 \ln \left( n \sin \frac 1 n \right)

    解:令 f(x)=x2ln(xsin1x)f(x) = x^2 \ln \left( x \sin \dfrac 1 x \right),由海涅定理可知,该数列极限即为 limx+f(x)\lim\limits_{x \to + \infty} f(x),令 u=1xu = \dfrac 1 x,则 u0+u \to 0^+

    limx+f(x)=limu0+lnsinuuu2=limu0+sinuuu3=limu0+uu36+o(u3)uu3=16 \begin {aligned} \lim\limits_{x \to + \infty} f(x) & = \lim\limits_{u \to 0^+} \frac {\ln \dfrac {\sin u} {u}} {u^2} \\ & = \lim_{u \to 0^+} \frac {\sin u - u} {u^3} \\ & = \lim_{u \to 0^+} \frac {u - \dfrac {u^3} 6 + o(u^3) - u} {u^3} = - \frac 1 6 \end {aligned}

  8. x>0x > 0 时,求证:对任何 nNn \in \N^*,有:

    xx22+x33x2n2n<ln(1+x)<xx22+x33+x2n12n1x - \frac {x^2} 2 + \frac {x^3} 3 - \cdots - \frac {x^{2n}} {2n} < \ln (1 + x) < x - \frac {x^2} 2 + \frac {x^3} 3 - \cdots + \frac {x^{2n - 1}} {2n - 1}

    证明:由 Taylor 公式可得:

    ln(1+x)=xx22+x33+x2n12n1x2n2n(1+ξ)2n,ξ(0,x) \ln (1 + x) = x - \frac {x^2} 2 + \frac {x^3} 3 - \cdots + \frac {x^{2n - 1}} {2n - 1} - \frac {x^{2n}} {2n (1 + \xi)^{2n}}, \xi \in (0, x)

    则显然对于 nN\forall \, n \in \N^*,有如下不等式成立:

    xx22+x33x2n2n<ln(1+x)<xx22+x33+x2n12n1 x - \frac {x^2} 2 + \frac {x^3} 3 - \cdots - \frac {x^{2n}} {2n} < \ln (1 + x) < x - \frac {x^2} 2 + \frac {x^3} 3 - \cdots + \frac {x^{2n - 1}} {2n - 1}

  9. f(x)f(x)R\R 上二次可微,且 xR\forall \, x \in \R,有:

    f(x)M0,f(x)M2.|f(x)| \le M_0, |f''(x)| \le M_2.

    (1) 写出 f(x+h),f(xh)f(x + h), f(x - h) 关于 hh 的带拉格朗日余项的泰勒公式;

    (2) 求证:对 h>0\forall \, h > 0,有 f(x)M0h+h2M2|f'(x)| \le \dfrac {M_0} h + \dfrac h 2 M_2

    (3) 求证:f(x)2M0M2|f'(x)| \le \sqrt {2 M_0 M_2}

    (1) 解:

    f(x+h)=f(x)+f(x)h+f(x+ξ1)2h2,ξ1(0,h)f(xh)=f(x)f(x)h+f(x+ξ2)2h2,ξ1(h,0) f(x + h) = f(x) + f'(x) h + \dfrac {f''(x + \xi_1)} 2 h^2, \xi_1 \in (0, h) \\ f(x - h) = f(x) - f'(x) h + \dfrac {f''(x + \xi_2)} 2 h^2, \xi_1 \in (-h, 0)

    (2) 证明:

    f(x+h)f(xh)=2f(x)h+f(x+ξ1)f(x+ξ2)2h2f(x)=f(x+h)f(xh)f(x+ξ1)f(x+ξ2)2h22hf(x)f(x+h)+f(xh)+f(x+ξ1)+f(x+ξ2)2h22h=2M0+M2h22h=M0h+h2M2 f(x + h) - f(x - h) = 2 f'(x) h + \frac {f''(x + \xi_1) - f''(x + \xi_2)} {2} h^2 \\ f'(x) = \frac {f(x + h) - f(x - h) - \dfrac {f''(x + \xi_1) - f''(x + \xi_2)} 2 h^2} {2h} \\ \begin {aligned} |f'(x)| & \le \frac {|f(x + h)| + |f(x - h)| + \dfrac {|f''(x + \xi_1)| + |f''(x + \xi_2)|} {2} h^2} {2h} \\ & = \frac {2M_0 + M_2 h^2} {2h} = \frac {M_0} h + \frac h 2 M_2 \end {aligned}

    (3) 由 (2)(2) 已知,对于任意 h>0h > 0,都有 f(x)M0h+h2M2|f'(x)| \le \dfrac {M_0} h + \dfrac h 2 M_2 成立,而 min(M0h+h2M2)=2M0hh2M2=2M0M2\min \left( \dfrac {M_0} h + \dfrac h 2 M_2 \right) = 2 \sqrt {\dfrac {M_0} h \dfrac h 2 M_2} = \sqrt {2 M_0 M_2},因此有 f(x)2M0M2|f'(x)| \le \sqrt {2 M_0 M_2} 成立。

  10. 设函数 f(x)f(x)[a,b][a, b] 上有一阶连续导数,在 (a,b)(a, b) 上二阶可导,且有 f(a)=f(b)=0f(a) = f(b) = 0,证明:任取 x(a,b)x \in (a, b),存在 ξ(a,b)\xi \in (a, b),使得:

    f(x)=f(ξ)2(xa)(xb)f(x) = \frac {f''(\xi)} 2 (x - a) (x - b)

    证明:固定 x(a,b)x \in (a, b),令 λ=2f(x)(xa)(xb)\lambda = \dfrac {2 f(x)} {(x - a)(x - b)},则本题即为证明存在 ξ(a,b)\xi \in (a, b),满足 f(ξ)=λf''(\xi) = \lambda。构造函数 g(t)=f(t)λ2(ta)(tb)g(t) = f(t) - \dfrac \lambda 2 (t - a) (t - b),则显然有 g(a)=g(x)=g(b)=0g(a) = g(x) = g(b) = 0,由罗尔定理,存在 ξ1(a,x),ξ2(x,b)\xi_1 \in (a, x), \xi_2 \in (x, b),使得 g(ξ1)=g(ξ2)=0g'(\xi_1) = g'(\xi_2) = 0,存在 ξ(ξ1,ξ2)\xi \in (\xi_1, \xi_2),使得 g(ξ)=0g''(\xi) = 0

    g(t)=f(t)λ2(ta+tb)g(t)=f(t)λ g'(t) = f'(t) - \frac \lambda 2 (t - a + t - b) \\ g''(t) = f''(t) - \lambda

    得证。