# 矩阵的秩的性质
定义 1 1 1 (相似矩阵) :对于两个 n n n 阶方阵 A , B A, B A , B ,如果存在可逆 n n n 阶方阵 P P P ,使得:
P − 1 A P = B P^{-1} A P = B
P − 1 A P = B
则称 A , B A, B A , B 矩阵相似,记作 A ∼ B A \sim B A ∼ B 。
矩阵秩的八大性质 :
0 ≤ r a n k A m × n ≤ min { m , n } 0 \le \mathrm {rank} \, A_{m \times n} \le \min \{ m, n \} 0 ≤ rank A m × n ≤ min { m , n } ;
r a n k A T = r a n k A \mathrm {rank} \, A^T = \mathrm {rank} \, A rank A T = rank A ;
若 A ∼ B A \sim B A ∼ B ,则 r a n k A = r a n k B \mathrm {rank} \, A = \mathrm {rank} \, B rank A = rank B ;
若 P , Q P, Q P , Q 可逆,则 r a n k ( P A Q ) = A \mathrm {rank} (PAQ) = \mathrm \, A rank ( P A Q ) = A ;
max { r a n k A , r a n k B } ≤ r a n k ( A , B ) ≤ r a n k A + r a n k B \max \{ \mathrm {rank} \, A, \mathrm {rank} \, B \} \le \mathrm {rank} (A, B) \le \mathrm {rank} \, A + \mathrm {rank} \, B max { rank A , rank B } ≤ rank ( A , B ) ≤ rank A + rank B ;
特别地,当 B B B 为列向量时,有 r a n k A ≤ r a n k ( A , B ) ≤ r a n k A + 1 \mathrm {rank} \, A \le \mathrm {rank} (A, B) \le \mathrm {rank} \, A + 1 rank A ≤ rank ( A , B ) ≤ rank A + 1 。
r a n k ( A + B ) ≤ r a n k A + r a n k B \mathrm {rank} (A + B) \le \mathrm {rank} \, A + \mathrm {rank} \, B rank ( A + B ) ≤ rank A + rank B ;
r a n k ( A B ) = min { r a n k A , r a n k B } \mathrm {rank} (AB) = \min \{ \mathrm {rank} \, A , \mathrm {rank} \, B \} rank ( A B ) = min { rank A , rank B } ;
若 A m × n B n × l = O A_{m \times n} B_{n \times l} = O A m × n B n × l = O ,则 r a n k A + r a n k B ≤ n \mathrm {rank} \, A + \mathrm {rank} \, B \le n rank A + rank B ≤ n 。
前两条是显然的。
第三条,由矩阵相似的定义,P , P − 1 P, P^{-1} P , P − 1 都是可逆矩阵,可逆矩阵一定可以拆分为若干个初等方阵之和,因此 B , A B, A B , A 可以通过若干次初等行变换、初等列变换相互转化,因此 A , B A, B A , B 两个矩阵的秩相等。
第四条理由同第三条。
关于第五条,因为 A A A 的最高阶非零子式总是 ( A , B ) (A, B) ( A , B ) 的非零子式,所以 r a n k A ≤ r a n k ( A , B ) \mathrm {rank} \, A \le \mathrm {rank} (A, B) rank A ≤ rank ( A , B ) 。同理有 r a n k B ≤ r a n k ( A , B ) \mathrm {rank} \, B \le \mathrm {rank} (A, B) rank B ≤ rank ( A , B ) ,两式合起来,即为:
max { r a n k A , r a n k B } ≤ r a n k ( A , B ) \max \{ \mathrm {rank} \, A, \mathrm {rank} \, B \} \le \mathrm {rank} (A, B)
max { rank A , rank B } ≤ rank ( A , B )
设 r a n k A = r , r a n k B = s \mathrm {rank} \, A = r, \mathrm {rank} \, B = s rank A = r , rank B = s ,把 A , B A, B A , B 分别作列变换化为列阶梯形 A 0 , B 0 A_0, B_0 A 0 , B 0 ,则 A 0 A_0 A 0 和 B 0 B_0 B 0 中分别含有 r r r 个和 s s s 个非零列,且 ( A , B ) (A, B) ( A , B ) 也可通过初等列变换化为 ( A 0 , B 0 ) (A_0, B_0) ( A 0 , B 0 ) ,由于 ( A 0 , B 0 ) (A_0, B_0) ( A 0 , B 0 ) 中只含有 r + s r + s r + s 个非零列,所以 r a n k ( A 0 , B 0 ) ≤ r + s \mathrm {rank} (A_0, B_0) \le r + s rank ( A 0 , B 0 ) ≤ r + s ,而 r a n k ( A , B ) = r a n k ( A , B ) \mathrm {rank} (A, B) = \mathrm {rank} (A, B) rank ( A , B ) = rank ( A , B ) ,故 r a n k ( A , B ) ≤ r + s = r a n k A + r a n k B \mathrm {rank} (A, B) \le r + s = \mathrm {rank} \, A + \mathrm {rank} \, B rank ( A , B ) ≤ r + s = rank A + rank B 。
对于第六条,显然 ( A + B , B ) (A + B, B) ( A + B , B ) 可以通过初等列变换转化为 ( A , B ) (A, B) ( A , B ) ,因此由第五条,r a n k ( A + B ) ≤ r a n k ( A + B , B ) = r a n k ( A , B ) ≤ r a n k A + r a n k B \mathrm {rank} (A + B) \le \mathrm {rank} (A + B, B) = \mathrm {rank} (A, B) \le \mathrm {rank} \, A + \mathrm {rank} \, B rank ( A + B ) ≤ rank ( A + B , B ) = rank ( A , B ) ≤ rank A + rank B 。
对于第七条,设 r a n k A = r , r a n k B = s \mathrm {rank} \, A = r, \mathrm {rank} \, B = s rank A = r , rank B = s 。又设 A A A 的行阶梯形为 A 0 A_0 A 0 ,B B B 的列阶梯形为 B 0 B_0 B 0 ,则存在可逆矩阵 P , Q P, Q P , Q 使 A = P A 0 , B = B 0 Q A = P A_0, B = B_0 Q A = P A 0 , B = B 0 Q 。因为 A B = P A 0 B 0 Q AB = P A_0 B_0 Q A B = P A 0 B 0 Q ,所以 r a n k ( A B ) = r a n k ( A 0 B 0 ) \mathrm {rank} (AB) = \mathrm {rank} (A_0 B_0) rank ( A B ) = rank ( A 0 B 0 ) 。因为 A 0 A_0 A 0 有 r r r 个非零行,B 0 B_0 B 0 有 s s s 个非零列,所以 A 0 B 0 A_0 B_0 A 0 B 0 至多有 r r r 个非零行和 s s s 个非零列,因此 r a n k ( A , B ) = r a n k ( A 0 , B 0 ) ≤ min { r , s } = min { r a n k A , r a n k B } \mathrm {rank} (A, B) = \mathrm {rank} (A_0, B_0) \le \min \{ r, s \} = \min \{ \mathrm {rank} \, A, \mathrm {rank} \, B \} rank ( A , B ) = rank ( A 0 , B 0 ) ≤ min { r , s } = min { rank A , rank B } 。
对于第八条,设 B = ( β 1 , β 2 , ⋯ , β l ) B = (\beta_1, \beta_2, \cdots, \beta_l) B = ( β 1 , β 2 , ⋯ , β l ) ,因为 A B = A ( β 1 β 2 ⋯ β l ) = O AB = A \begin {pmatrix} \beta_1 & \beta_2 & \cdots & \beta_l \end {pmatrix} = O A B = A ( β 1 β 2 ⋯ β l ) = O ,所以 A β i = o , i = 1 , 2 , ⋯ , l A \beta_i = o, i = 1, 2, \cdots, l A β i = o , i = 1 , 2 , ⋯ , l ,即 β 1 , β 2 , ⋯ , β l \beta_1, \beta_2, \cdots, \beta_l β 1 , β 2 , ⋯ , β l 都是方程组 A x = O A x = O A x = O 的解向量,也即 β 1 , β 2 , ⋯ , β l \beta_1, \beta_2, \cdots, \beta_l β 1 , β 2 , ⋯ , β l 都是方程组 A x = o A x = o A x = o 的解向量组的部分组,而 A x = o Ax = o A x = o 的解向量组的秩是 n − r a n k A n - \mathrm {rank} \, A n − rank A ,所以 r a n k B = r a n k ( β 1 , β 2 , ⋯ , β l ) ≤ n − r a n k A \mathrm {rank} \, B = \mathrm {rank} (\beta_1, \beta_2, \cdots, \beta_l) \le n - \mathrm {rank} \, A rank B = rank ( β 1 , β 2 , ⋯ , β l ) ≤ n − rank A ,此即 r a n k A + r a n k B ≤ n \mathrm {rank} \, A + \mathrm {rank} \, B \le n rank A + rank B ≤ n 。
# 习题
求下列矩阵的秩:
(1) A = ( 0 1 1 − 1 2 0 2 − 2 − 2 0 0 − 1 − 1 1 1 1 1 0 1 − 1 ) A = \begin {pmatrix} 0 & 1 & 1 & -1 & 2 \\ 0 & 2 & -2 & -2 & 0 \\ 0 & -1 & -1 & 1 & 1 \\ 1 & 1 & 0 & 1 & -1 \end {pmatrix} A = 0 0 0 1 1 2 − 1 1 1 − 2 − 1 0 − 1 − 2 1 1 2 0 1 − 1 ;
(2) n n n 阶方阵 ( 1 a ⋯ a a 1 ⋯ a ⋮ ⋮ ⋱ ⋮ a a ⋯ 1 ) \begin {pmatrix} 1 & a & \cdots & a \\ a & 1 & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & 1 \end {pmatrix} 1 a ⋮ a a 1 ⋮ a ⋯ ⋯ ⋱ ⋯ a a ⋮ 1 ,其中 a a a 为常数,n > 1 n > 1 n > 1 。
(1) 解:对该矩阵进行初等行变换:
( 0 1 1 − 1 2 0 2 − 2 − 2 0 0 − 1 − 1 1 1 1 1 0 1 − 1 ) → ( 1 1 0 1 − 1 0 − 1 − 1 1 1 0 0 − 4 0 2 0 0 0 0 3 ) \begin {pmatrix}
0 & 1 & 1 & -1 & 2 \\
0 & 2 & -2 & -2 & 0 \\
0 & -1 & -1 & 1 & 1 \\
1 & 1 & 0 & 1 & -1
\end {pmatrix} \to \begin {pmatrix}
1 & 1 & 0 & 1 & -1 \\
0 & -1 & -1 & 1 & 1 \\
0 & 0 & -4 & 0 & 2 \\
0 & 0 & 0 & 0 & 3
\end {pmatrix}
0 0 0 1 1 2 − 1 1 1 − 2 − 1 0 − 1 − 2 1 1 2 0 1 − 1 → 1 0 0 0 1 − 1 0 0 0 − 1 − 4 0 1 1 0 0 − 1 1 2 3
因此该矩阵秩为 4 4 4 。
(2) 解:当 a = 1 a = 1 a = 1 时,该方阵每一行相同,此时秩为 1 1 1 ;当 a ≠ 1 a \not = 1 a = 1 时:
( 1 a ⋯ a a 1 ⋯ a ⋮ ⋮ ⋱ ⋮ a a ⋯ 1 ) = ∣ 1 a a ⋯ a 0 1 a ⋯ a 0 a 1 ⋯ a ⋮ ⋮ ⋮ ⋱ ⋮ 0 a a ⋯ 1 ∣ ( n + 1 ) × ( n + 1 ) = ∣ 1 a a ⋯ a − 1 1 − a 0 ⋯ 0 − 1 0 1 − a ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − 1 0 0 ⋯ 1 − a ∣ ( n + 1 ) × ( n + 1 ) = ∣ 1 − a 0 0 ⋯ 0 − 1 1 − a 0 ⋯ 0 − 1 0 1 − a ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − 1 0 0 ⋯ 1 − a ∣ ( n + 1 ) × ( n + 1 ) = ( 1 − a ) n + 1 ≠ 0 \begin {aligned}
\begin {pmatrix}
1 & a & \cdots & a \\
a & 1 & \cdots & a \\
\vdots & \vdots & \ddots & \vdots \\
a & a & \cdots & 1
\end {pmatrix} & = \begin {vmatrix}
1 & a & a & \cdots & a \\
0 & 1 & a & \cdots & a \\
0 & a & 1 & \cdots & a \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & a & a & \cdots & 1
\end {vmatrix}_{(n + 1) \times (n + 1)} \\
& = \begin {vmatrix}
1 & a & a & \cdots & a \\
-1 & 1 - a & 0 & \cdots & 0 \\
-1 & 0 & 1 - a & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & 0 & \cdots & 1 - a
\end {vmatrix}_{(n + 1) \times (n + 1)} \\
& = \begin {vmatrix}
1 - a & 0 & 0 & \cdots & 0 \\
-1 & 1 - a & 0 & \cdots & 0 \\
-1 & 0 & 1 - a & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & 0 & \cdots & 1 - a
\end {vmatrix}_{(n + 1) \times (n + 1)} \\
& = (1 - a)^{n + 1} \not = 0
\end {aligned}
1 a ⋮ a a 1 ⋮ a ⋯ ⋯ ⋱ ⋯ a a ⋮ 1 = 1 0 0 ⋮ 0 a 1 a ⋮ a a a 1 ⋮ a ⋯ ⋯ ⋯ ⋱ ⋯ a a a ⋮ 1 ( n + 1 ) × ( n + 1 ) = 1 − 1 − 1 ⋮ − 1 a 1 − a 0 ⋮ 0 a 0 1 − a ⋮ 0 ⋯ ⋯ ⋯ ⋱ ⋯ a 0 0 ⋮ 1 − a ( n + 1 ) × ( n + 1 ) = 1 − a − 1 − 1 ⋮ − 1 0 1 − a 0 ⋮ 0 0 0 1 − a ⋮ 0 ⋯ ⋯ ⋯ ⋱ ⋯ 0 0 0 ⋮ 1 − a ( n + 1 ) × ( n + 1 ) = ( 1 − a ) n + 1 = 0
因此此时方阵各行线性无关,其秩为 n n n 。
已知
A = ( 1 2 ⋯ n 2 3 ⋯ n + 1 ) , n ≥ 2 A = \begin {pmatrix}
1 & 2 & \cdots & n \\
2 & 3 & \cdots & n + 1
\end {pmatrix}, n \ge 2
A = ( 1 2 2 3 ⋯ ⋯ n n + 1 ) , n ≥ 2
求 det ( A A T ) \det (A A^T) det ( A A T ) 与 det ( A T A ) \det (A^T A) det ( A T A ) 。
提示 :先考虑行列式是否为 0 0 0 。
解:设 B = ( 1 , 2 , ⋯ , n ) , E = ( 1 , 1 , ⋯ , 1 ) B = (1, 2, \cdots, n), E = (1, 1, \cdots, 1) B = ( 1 , 2 , ⋯ , n ) , E = ( 1 , 1 , ⋯ , 1 ) ,则:
A = ( B B + E ) , A T = ( B T B T + E T ) A A T = ( B B T B ( B T + E T ) ( B + E ) B T ( B + E ) ( B T + E T ) ) B B T = ∑ i = 1 n i 2 B E T = ∑ i = 1 n i = E B T E E T = n det ( A A T ) = ( ∑ i = 1 n i 2 ) ( ∑ i = 1 n i 2 + 2 ∑ i = 1 n i + n ) − ( ∑ i = 1 n i 2 + ∑ i = 1 n i ) 2 = n ∑ i = 1 n i 2 − ( ∑ i = 1 n i ) 2 = n 2 ( n 2 − 1 ) 12 det ( A T A ) = det ( A A T ) = n 2 ( n 2 − 1 ) 12 A = \begin {pmatrix}
B \\ B + E
\end {pmatrix}, A^T = \begin {pmatrix}
B^T & B^T + E^T
\end {pmatrix} \\
A A^T = \begin {pmatrix}
B B^T & B (B^T + E^T) \\
(B + E) B^T & (B + E) (B^T + E^T)
\end {pmatrix} \\
BB^T = \sum_{i = 1}^n i^2 \\
BE^T = \sum_{i = 1}^n i = EB^T \\
EE^T = n \\
\begin {aligned}
\det (A A^T) & = \left( \sum_{i = 1}^n i^2 \right) \left( \sum_{i = 1}^n i^2 + 2 \sum_{i = 1}^n i + n \right) - \left( \sum_{i = 1}^n i^2 + \sum_{i = 1}^n i \right)^2 \\
& = n \sum_{i = 1}^n i^2 - \left( \sum_{i = 1}^n i \right)^2 = \frac {n^2 (n^2 - 1)} {12}
\end {aligned} \\
\det (A^T A) = \det (A A^T) = \frac {n^2 (n^2 - 1)} {12}
A = ( B B + E ) , A T = ( B T B T + E T ) A A T = ( B B T ( B + E ) B T B ( B T + E T ) ( B + E ) ( B T + E T ) ) B B T = i = 1 ∑ n i 2 B E T = i = 1 ∑ n i = E B T E E T = n det ( A A T ) = ( i = 1 ∑ n i 2 ) ( i = 1 ∑ n i 2 + 2 i = 1 ∑ n i + n ) − ( i = 1 ∑ n i 2 + i = 1 ∑ n i ) 2 = n i = 1 ∑ n i 2 − ( i = 1 ∑ n i ) 2 = 12 n 2 ( n 2 − 1 ) det ( A T A ) = det ( A A T ) = 12 n 2 ( n 2 − 1 )
设 A A A 是 4 × 3 4 \times 3 4 × 3 阶矩阵,r a n k ( A ) = 2 , B = ( 2 0 1 1 − 1 6 − 2 0 2 ) \mathrm {rank} (A) = 2, B = \begin {pmatrix} 2 & 0 & 1 \\ 1 & -1 & 6 \\ -2 & 0 & 2 \end {pmatrix} rank ( A ) = 2 , B = 2 1 − 2 0 − 1 0 1 6 2 ,求 r a n k ( A B ) \mathrm {rank} (AB) rank ( A B ) 。
解:将 B B B 经过一系列初等行变换和初等列变换可得到单位矩阵 I ( 3 ) I_{(3)} I ( 3 ) ,则 B B B 为满秩矩阵,且可与一系列初等方阵通过矩阵乘法转化为 I ( 3 ) I_{(3)} I ( 3 ) 。设 P = P 1 P 2 ⋯ P s , Q = Q 1 Q 2 ⋯ Q r P = P_1 P_2 \cdots P_s, Q = Q_1 Q_2 \cdots Q_r P = P 1 P 2 ⋯ P s , Q = Q 1 Q 2 ⋯ Q r ,且 P B Q = I ( 3 ) PBQ = I_{(3)} PBQ = I ( 3 ) ,则 P , Q P, Q P , Q 可逆,且 B = P − 1 I ( 3 ) Q ( − 1 ) = P − 1 Q − 1 B = P^{-1} I_{(3)} Q^{(-1)} = P^{-1} Q^{-1} B = P − 1 I ( 3 ) Q ( − 1 ) = P − 1 Q − 1 也是若干初等方阵相乘的结果。
则 A B = A P − 1 Q − 1 AB = A P^{-1} Q^{-1} A B = A P − 1 Q − 1 为 A A A 与若干初等方阵右乘,相当于对 A A A 进行若干次初等列变换,不改变 A A A 的秩,因此 r a n k ( A B ) = 2 \mathrm {rank} (AB) = 2 rank ( A B ) = 2 。
设方阵 A A A 满足 A 2 − 3 A + 2 E = O A^2 - 3A + 2E = O A 2 − 3 A + 2 E = O ,证明:r a n k ( A − E ) + r a n k ( A − 2 E ) = n \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) = n rank ( A − E ) + rank ( A − 2 E ) = n 。
证明:( A − E ) ( A − 2 E ) = O (A - E) (A - 2E) = O ( A − E ) ( A − 2 E ) = O ,由矩阵秩的性质可知:
r a n k ( A − E ) + r a n k ( A − 2 E ) ≤ n \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) \le n
rank ( A − E ) + rank ( A − 2 E ) ≤ n
又由于 r a n k ( A − E − ( A − 2 E ) ) = r a n k ( E ) = n ≤ r a n k ( A − E ) + r a n k ( A − 2 E ) \mathrm {rank} (A - E - (A - 2E)) = \mathrm {rank} (E) = n \le \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) rank ( A − E − ( A − 2 E )) = rank ( E ) = n ≤ rank ( A − E ) + rank ( A − 2 E ) ,因此 r a n k ( A − E ) + r a n k ( A − 2 E ) = n \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) = n rank ( A − E ) + rank ( A − 2 E ) = n 。
设 A A A 为 n n n 阶方阵,A ∗ A^* A ∗ 为其伴随矩阵,证明:
r a n k ( A ∗ ) = { n , r a n k A = n ( 1 ) 1 , r a n k A = n − 1 ( 2 ) 0 , r a n k A < n − 1 ( 3 ) \mathrm {rank} (A^*) = \begin {cases}
n, & \mathrm {rank} \, A = n & (1) \\
1, & \mathrm {rank} \, A = n - 1 & (2) \\
0, & \mathrm {rank} \, A < n - 1 & (3)
\end {cases}
rank ( A ∗ ) = ⎩ ⎨ ⎧ n , 1 , 0 , rank A = n rank A = n − 1 rank A < n − 1 ( 1 ) ( 2 ) ( 3 )
提示 :(2) 考察方程组 A A ∗ = 0 A A^* = 0 A A ∗ = 0 ;(3) 利用 A A A 的行列式秩的定义。
证明:由伴随矩阵定义可知:A A ∗ = ∣ A ∣ I ( n ) A A^* = |A| I_{(n)} A A ∗ = ∣ A ∣ I ( n ) 。
当 r a n k A = n \mathrm {rank} \, A = n rank A = n 时,∣ A ∣ ≠ 0 |A| \not = 0 ∣ A ∣ = 0 ,因此 det ( A A ∗ ) = ∣ A ∣ ≠ 0 \det (A A^*) = |A| \not = 0 det ( A A ∗ ) = ∣ A ∣ = 0 ,因此 det A ∗ ≠ 0 \det A^* \not = 0 det A ∗ = 0 ,即 r a n k A ∗ = n \mathrm {rank} \, A^* = n rank A ∗ = n 。
当 r a n k A = n − 1 \mathrm {rank} \, A = n - 1 rank A = n − 1 时,设 A ∗ = ( α 1 , α 2 , ⋯ , α n ) A^* = (\alpha_1, \alpha_2, \cdots, \alpha_n) A ∗ = ( α 1 , α 2 , ⋯ , α n ) ,由 A A ∗ = A ( α 1 α 2 ⋯ α n ) = O A A^* = A \begin {pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end {pmatrix} = O A A ∗ = A ( α 1 α 2 ⋯ α n ) = O 可得:A α i = o , i = 1 , 2 , ⋯ , n A \alpha_i = o, i = 1, 2, \cdots, n A α i = o , i = 1 , 2 , ⋯ , n ,即 α 1 , ⋯ , α n \alpha_1, \cdots, \alpha_n α 1 , ⋯ , α n 均为方程 A x = o Ax = o A x = o 的解向量,又该方程的解向量组的秩为 n − r a n k A = 1 n - \mathrm {rank} \, A = 1 n − rank A = 1 ,因此 r a n k A ∗ = r a n k ( α 1 , ⋯ , α n ) = 1 \mathrm {rank} \, A^* = \mathrm {rank} (\alpha_1, \cdots, \alpha_n) = 1 rank A ∗ = rank ( α 1 , ⋯ , α n ) = 1 。
当 r a n k A < n − 1 \mathrm {rank} \, A < n - 1 rank A < n − 1 时,A A A 的 n − 1 n - 1 n − 1 阶子式的行列式值也为 0 0 0 ,即对于 ∀ i , j ∈ [ 1 , n ] \forall \, i, j \in [1, n] ∀ i , j ∈ [ 1 , n ] ,都有 A i , j = 0 A_{i, j} = 0 A i , j = 0 ,因此 A ∗ = O A^* = O A ∗ = O ,即 r a n k A ∗ = 0 \mathrm {rank} \, A^* = 0 rank A ∗ = 0 。
设方阵 A A A 的秩为 1 1 1 ,求证:A n = ( t r A ) n − 1 A A^n = (\mathrm {tr} \, A)^{n - 1} A A n = ( tr A ) n − 1 A 。
提示 :秩为 1 1 1 的矩阵一定可以写成一个列向量 β \beta β 乘一个行向量 α \alpha α ,t r A = t r ( β α ) = t r ( α β ) \mathrm {tr} \, A = \mathrm {tr} (\beta \alpha) = \mathrm {tr} (\alpha \beta) tr A = tr ( β α ) = tr ( α β ) 。
证明:由于 A A A 的秩为 1 1 1 ,设 α = ( a 1 a 2 ⋮ a n ) , β = ( b 1 b 2 ⋯ b n ) \alpha = \begin {pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end {pmatrix}, \beta = \begin {pmatrix} b_1 & b_2 & \cdots & b_n \end {pmatrix} α = a 1 a 2 ⋮ a n , β = ( b 1 b 2 ⋯ b n ) ,则 A A A 一定能表示为 A = α β A = \alpha \beta A = α β ,且 β α = a 1 b 1 + a 2 b 2 + ⋯ + a n b n \beta \alpha = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n β α = a 1 b 1 + a 2 b 2 + ⋯ + a n b n 。
设 A = ( c i , j ) n × n A = (c_{i, j})_{n \times n} A = ( c i , j ) n × n ,则 c i , i = a i b i c_{i, i} = a_i b_i c i , i = a i b i ,所以 β α = c 1 , 1 + ⋯ + c n , n = t r A \beta \alpha = c_{1, 1} + \cdots + c_{n, n} = \mathrm {tr} \, A β α = c 1 , 1 + ⋯ + c n , n = tr A 。于是有:
A n = ( α β ) n = α ( β α ) n − 1 β = α ( t r A ) n − 1 β = ( t r A ) n − 1 A \begin {aligned}
A^n &= (\alpha \beta)^n \\
& = \alpha (\beta \alpha)^{n - 1} \beta \\
& = \alpha (\mathrm {tr} \, A)^{n - 1} \beta \\
& = (\mathrm {tr} \, A)^{n - 1} A
\end {aligned}
A n = ( α β ) n = α ( β α ) n − 1 β = α ( tr A ) n − 1 β = ( tr A ) n − 1 A
证明:任意一个秩为 r r r 的矩阵都可以表示成 r r r 个秩为 1 1 1 的矩阵之和。
提示 :利用矩阵的 C R \mathrm {CR} CR 分解,以及矩阵乘法的视角。
证明:设矩阵 A ∈ F n × m A \in \mathbb F^{n \times m} A ∈ F n × m ,其秩为 r r r ,则由矩阵的 C R \mathrm {CR} CR 分解,该矩阵必可拆分成两个矩阵之积:A = B C A = BC A = BC ,其中 B ∈ F n × r , C ∈ F r × m B \in \mathbb F^{n \times r}, C \in \mathbb F^{r \times m} B ∈ F n × r , C ∈ F r × m 。设 B = ( β 1 , β 2 , ⋯ , β r ) , C = ( γ 1 γ 2 ⋮ γ r ) B = (\beta_1, \beta_2, \cdots, \beta_r), C = \begin {pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_r \end {pmatrix} B = ( β 1 , β 2 , ⋯ , β r ) , C = γ 1 γ 2 ⋮ γ r ,则 A = B C = β 1 γ 1 + β 2 γ 2 + ⋯ + β r γ r A = BC = \beta_1 \gamma_1 + \beta_2 \gamma_2 + \cdots + \beta_r \gamma_r A = BC = β 1 γ 1 + β 2 γ 2 + ⋯ + β r γ r ,其中 β i γ i \beta_i \gamma_i β i γ i 表示一个秩为 1 1 1 的 n × m n \times m n × m 阶矩阵 ( i = 1 , 2 , ⋯ , r ) (i = 1, 2, \cdots, r) ( i = 1 , 2 , ⋯ , r ) ,得证。