# 矩阵的秩的性质

定义 11(相似矩阵):对于两个 nn 阶方阵 A,BA, B,如果存在可逆 nn 阶方阵 PP,使得:

P1AP=BP^{-1} A P = B

则称 A,BA, B 矩阵相似,记作 ABA \sim B

矩阵秩的八大性质

  1. 0rankAm×nmin{m,n}0 \le \mathrm {rank} \, A_{m \times n} \le \min \{ m, n \}

  2. rankAT=rankA\mathrm {rank} \, A^T = \mathrm {rank} \, A

  3. ABA \sim B,则 rankA=rankB\mathrm {rank} \, A = \mathrm {rank} \, B

  4. P,QP, Q 可逆,则 rank(PAQ)=A\mathrm {rank} (PAQ) = \mathrm \, A

  5. max{rankA,rankB}rank(A,B)rankA+rankB\max \{ \mathrm {rank} \, A, \mathrm {rank} \, B \} \le \mathrm {rank} (A, B) \le \mathrm {rank} \, A + \mathrm {rank} \, B

    特别地,当 BB 为列向量时,有 rankArank(A,B)rankA+1\mathrm {rank} \, A \le \mathrm {rank} (A, B) \le \mathrm {rank} \, A + 1

  6. rank(A+B)rankA+rankB\mathrm {rank} (A + B) \le \mathrm {rank} \, A + \mathrm {rank} \, B

  7. rank(AB)=min{rankA,rankB}\mathrm {rank} (AB) = \min \{ \mathrm {rank} \, A , \mathrm {rank} \, B \}

  8. Am×nBn×l=OA_{m \times n} B_{n \times l} = O,则 rankA+rankBn\mathrm {rank} \, A + \mathrm {rank} \, B \le n

前两条是显然的。

第三条,由矩阵相似的定义,P,P1P, P^{-1} 都是可逆矩阵,可逆矩阵一定可以拆分为若干个初等方阵之和,因此 B,AB, A 可以通过若干次初等行变换、初等列变换相互转化,因此 A,BA, B 两个矩阵的秩相等。

第四条理由同第三条。

关于第五条,因为 AA 的最高阶非零子式总是 (A,B)(A, B) 的非零子式,所以 rankArank(A,B)\mathrm {rank} \, A \le \mathrm {rank} (A, B)。同理有 rankBrank(A,B)\mathrm {rank} \, B \le \mathrm {rank} (A, B),两式合起来,即为:

max{rankA,rankB}rank(A,B)\max \{ \mathrm {rank} \, A, \mathrm {rank} \, B \} \le \mathrm {rank} (A, B)

rankA=r,rankB=s\mathrm {rank} \, A = r, \mathrm {rank} \, B = s,把 A,BA, B 分别作列变换化为列阶梯形 A0,B0A_0, B_0,则 A0A_0B0B_0 中分别含有 rr 个和 ss 个非零列,且 (A,B)(A, B) 也可通过初等列变换化为 (A0,B0)(A_0, B_0),由于 (A0,B0)(A_0, B_0) 中只含有 r+sr + s 个非零列,所以 rank(A0,B0)r+s\mathrm {rank} (A_0, B_0) \le r + s,而 rank(A,B)=rank(A,B)\mathrm {rank} (A, B) = \mathrm {rank} (A, B),故 rank(A,B)r+s=rankA+rankB\mathrm {rank} (A, B) \le r + s = \mathrm {rank} \, A + \mathrm {rank} \, B

对于第六条,显然 (A+B,B)(A + B, B) 可以通过初等列变换转化为 (A,B)(A, B),因此由第五条,rank(A+B)rank(A+B,B)=rank(A,B)rankA+rankB\mathrm {rank} (A + B) \le \mathrm {rank} (A + B, B) = \mathrm {rank} (A, B) \le \mathrm {rank} \, A + \mathrm {rank} \, B

对于第七条,设 rankA=r,rankB=s\mathrm {rank} \, A = r, \mathrm {rank} \, B = s。又设 AA 的行阶梯形为 A0A_0BB 的列阶梯形为 B0B_0,则存在可逆矩阵 P,QP, Q 使 A=PA0,B=B0QA = P A_0, B = B_0 Q。因为 AB=PA0B0QAB = P A_0 B_0 Q,所以 rank(AB)=rank(A0B0)\mathrm {rank} (AB) = \mathrm {rank} (A_0 B_0)。因为 A0A_0rr 个非零行,B0B_0ss 个非零列,所以 A0B0A_0 B_0 至多有 rr 个非零行和 ss 个非零列,因此 rank(A,B)=rank(A0,B0)min{r,s}=min{rankA,rankB}\mathrm {rank} (A, B) = \mathrm {rank} (A_0, B_0) \le \min \{ r, s \} = \min \{ \mathrm {rank} \, A, \mathrm {rank} \, B \}

对于第八条,设 B=(β1,β2,,βl)B = (\beta_1, \beta_2, \cdots, \beta_l),因为 AB=A(β1β2βl)=OAB = A \begin {pmatrix} \beta_1 & \beta_2 & \cdots & \beta_l \end {pmatrix} = O,所以 Aβi=o,i=1,2,,lA \beta_i = o, i = 1, 2, \cdots, l,即 β1,β2,,βl\beta_1, \beta_2, \cdots, \beta_l 都是方程组 Ax=OA x = O 的解向量,也即 β1,β2,,βl\beta_1, \beta_2, \cdots, \beta_l 都是方程组 Ax=oA x = o 的解向量组的部分组,而 Ax=oAx = o 的解向量组的秩是 nrankAn - \mathrm {rank} \, A,所以 rankB=rank(β1,β2,,βl)nrankA\mathrm {rank} \, B = \mathrm {rank} (\beta_1, \beta_2, \cdots, \beta_l) \le n - \mathrm {rank} \, A,此即 rankA+rankBn\mathrm {rank} \, A + \mathrm {rank} \, B \le n

# 习题

  1. 求下列矩阵的秩:

    (1) A=(01112022200111111011)A = \begin {pmatrix} 0 & 1 & 1 & -1 & 2 \\ 0 & 2 & -2 & -2 & 0 \\ 0 & -1 & -1 & 1 & 1 \\ 1 & 1 & 0 & 1 & -1 \end {pmatrix}

    (2) nn 阶方阵 (1aaa1aaa1)\begin {pmatrix} 1 & a & \cdots & a \\ a & 1 & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & 1 \end {pmatrix},其中 aa 为常数,n>1n > 1

    (1) 解:对该矩阵进行初等行变换:

    (01112022200111111011)(11011011110040200003) \begin {pmatrix} 0 & 1 & 1 & -1 & 2 \\ 0 & 2 & -2 & -2 & 0 \\ 0 & -1 & -1 & 1 & 1 \\ 1 & 1 & 0 & 1 & -1 \end {pmatrix} \to \begin {pmatrix} 1 & 1 & 0 & 1 & -1 \\ 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & -4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 3 \end {pmatrix}

    因此该矩阵秩为 44

    (2) 解:当 a=1a = 1 时,该方阵每一行相同,此时秩为 11;当 a1a \not = 1 时:

    (1aaa1aaa1)=1aaa01aa0a1a0aa1(n+1)×(n+1)=1aaa11a00101a01001a(n+1)×(n+1)=1a00011a00101a01001a(n+1)×(n+1)=(1a)n+10 \begin {aligned} \begin {pmatrix} 1 & a & \cdots & a \\ a & 1 & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & 1 \end {pmatrix} & = \begin {vmatrix} 1 & a & a & \cdots & a \\ 0 & 1 & a & \cdots & a \\ 0 & a & 1 & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a & a & \cdots & 1 \end {vmatrix}_{(n + 1) \times (n + 1)} \\ & = \begin {vmatrix} 1 & a & a & \cdots & a \\ -1 & 1 - a & 0 & \cdots & 0 \\ -1 & 0 & 1 - a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & 1 - a \end {vmatrix}_{(n + 1) \times (n + 1)} \\ & = \begin {vmatrix} 1 - a & 0 & 0 & \cdots & 0 \\ -1 & 1 - a & 0 & \cdots & 0 \\ -1 & 0 & 1 - a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & 1 - a \end {vmatrix}_{(n + 1) \times (n + 1)} \\ & = (1 - a)^{n + 1} \not = 0 \end {aligned}

    因此此时方阵各行线性无关,其秩为 nn

  2. 已知

    A=(12n23n+1),n2A = \begin {pmatrix} 1 & 2 & \cdots & n \\ 2 & 3 & \cdots & n + 1 \end {pmatrix}, n \ge 2

    det(AAT)\det (A A^T)det(ATA)\det (A^T A)

    提示:先考虑行列式是否为 00

    解:设 B=(1,2,,n),E=(1,1,,1)B = (1, 2, \cdots, n), E = (1, 1, \cdots, 1),则:

    A=(BB+E),AT=(BTBT+ET)AAT=(BBTB(BT+ET)(B+E)BT(B+E)(BT+ET))BBT=i=1ni2BET=i=1ni=EBTEET=ndet(AAT)=(i=1ni2)(i=1ni2+2i=1ni+n)(i=1ni2+i=1ni)2=ni=1ni2(i=1ni)2=n2(n21)12det(ATA)=det(AAT)=n2(n21)12 A = \begin {pmatrix} B \\ B + E \end {pmatrix}, A^T = \begin {pmatrix} B^T & B^T + E^T \end {pmatrix} \\ A A^T = \begin {pmatrix} B B^T & B (B^T + E^T) \\ (B + E) B^T & (B + E) (B^T + E^T) \end {pmatrix} \\ BB^T = \sum_{i = 1}^n i^2 \\ BE^T = \sum_{i = 1}^n i = EB^T \\ EE^T = n \\ \begin {aligned} \det (A A^T) & = \left( \sum_{i = 1}^n i^2 \right) \left( \sum_{i = 1}^n i^2 + 2 \sum_{i = 1}^n i + n \right) - \left( \sum_{i = 1}^n i^2 + \sum_{i = 1}^n i \right)^2 \\ & = n \sum_{i = 1}^n i^2 - \left( \sum_{i = 1}^n i \right)^2 = \frac {n^2 (n^2 - 1)} {12} \end {aligned} \\ \det (A^T A) = \det (A A^T) = \frac {n^2 (n^2 - 1)} {12}

  3. AA4×34 \times 3 阶矩阵,rank(A)=2,B=(201116202)\mathrm {rank} (A) = 2, B = \begin {pmatrix} 2 & 0 & 1 \\ 1 & -1 & 6 \\ -2 & 0 & 2 \end {pmatrix},求 rank(AB)\mathrm {rank} (AB)

    解:将 BB 经过一系列初等行变换和初等列变换可得到单位矩阵 I(3)I_{(3)},则 BB 为满秩矩阵,且可与一系列初等方阵通过矩阵乘法转化为 I(3)I_{(3)}。设 P=P1P2Ps,Q=Q1Q2QrP = P_1 P_2 \cdots P_s, Q = Q_1 Q_2 \cdots Q_r,且 PBQ=I(3)PBQ = I_{(3)},则 P,QP, Q 可逆,且 B=P1I(3)Q(1)=P1Q1B = P^{-1} I_{(3)} Q^{(-1)} = P^{-1} Q^{-1} 也是若干初等方阵相乘的结果。
    AB=AP1Q1AB = A P^{-1} Q^{-1}AA 与若干初等方阵右乘,相当于对 AA 进行若干次初等列变换,不改变 AA 的秩,因此 rank(AB)=2\mathrm {rank} (AB) = 2

  4. 设方阵 AA 满足 A23A+2E=OA^2 - 3A + 2E = O,证明:rank(AE)+rank(A2E)=n\mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) = n

    证明:(AE)(A2E)=O(A - E) (A - 2E) = O,由矩阵秩的性质可知:

    rank(AE)+rank(A2E)n \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) \le n

    又由于 rank(AE(A2E))=rank(E)=nrank(AE)+rank(A2E)\mathrm {rank} (A - E - (A - 2E)) = \mathrm {rank} (E) = n \le \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E),因此 rank(AE)+rank(A2E)=n\mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) = n

  5. AAnn 阶方阵,AA^* 为其伴随矩阵,证明:

    rank(A)={n,rankA=n(1)1,rankA=n1(2)0,rankA<n1(3)\mathrm {rank} (A^*) = \begin {cases} n, & \mathrm {rank} \, A = n & (1) \\ 1, & \mathrm {rank} \, A = n - 1 & (2) \\ 0, & \mathrm {rank} \, A < n - 1 & (3) \end {cases}

    提示:(2) 考察方程组 AA=0A A^* = 0;(3) 利用 AA 的行列式秩的定义。

    证明:由伴随矩阵定义可知:AA=AI(n)A A^* = |A| I_{(n)}
    rankA=n\mathrm {rank} \, A = n 时,A0|A| \not = 0,因此 det(AA)=A0\det (A A^*) = |A| \not = 0,因此 detA0\det A^* \not = 0,即 rankA=n\mathrm {rank} \, A^* = n
    rankA=n1\mathrm {rank} \, A = n - 1 时,设 A=(α1,α2,,αn)A^* = (\alpha_1, \alpha_2, \cdots, \alpha_n),由 AA=A(α1α2αn)=OA A^* = A \begin {pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end {pmatrix} = O 可得:Aαi=o,i=1,2,,nA \alpha_i = o, i = 1, 2, \cdots, n,即 α1,,αn\alpha_1, \cdots, \alpha_n 均为方程 Ax=oAx = o 的解向量,又该方程的解向量组的秩为 nrankA=1n - \mathrm {rank} \, A = 1,因此 rankA=rank(α1,,αn)=1\mathrm {rank} \, A^* = \mathrm {rank} (\alpha_1, \cdots, \alpha_n) = 1
    rankA<n1\mathrm {rank} \, A < n - 1 时,AAn1n - 1 阶子式的行列式值也为 00,即对于 i,j[1,n]\forall \, i, j \in [1, n],都有 Ai,j=0A_{i, j} = 0,因此 A=OA^* = O,即 rankA=0\mathrm {rank} \, A^* = 0

  6. 设方阵 AA 的秩为 11,求证:An=(trA)n1AA^n = (\mathrm {tr} \, A)^{n - 1} A

    提示:秩为 11 的矩阵一定可以写成一个列向量 β\beta 乘一个行向量 α\alphatrA=tr(βα)=tr(αβ)\mathrm {tr} \, A = \mathrm {tr} (\beta \alpha) = \mathrm {tr} (\alpha \beta)

    证明:由于 AA 的秩为 11,设 α=(a1a2an),β=(b1b2bn)\alpha = \begin {pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end {pmatrix}, \beta = \begin {pmatrix} b_1 & b_2 & \cdots & b_n \end {pmatrix},则 AA 一定能表示为 A=αβA = \alpha \beta,且 βα=a1b1+a2b2++anbn\beta \alpha = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n
    A=(ci,j)n×nA = (c_{i, j})_{n \times n},则 ci,i=aibic_{i, i} = a_i b_i,所以 βα=c1,1++cn,n=trA\beta \alpha = c_{1, 1} + \cdots + c_{n, n} = \mathrm {tr} \, A。于是有:

    An=(αβ)n=α(βα)n1β=α(trA)n1β=(trA)n1A \begin {aligned} A^n &= (\alpha \beta)^n \\ & = \alpha (\beta \alpha)^{n - 1} \beta \\ & = \alpha (\mathrm {tr} \, A)^{n - 1} \beta \\ & = (\mathrm {tr} \, A)^{n - 1} A \end {aligned}

  7. 证明:任意一个秩为 rr 的矩阵都可以表示成 rr 个秩为 11 的矩阵之和。

    提示:利用矩阵的 CR\mathrm {CR} 分解,以及矩阵乘法的视角。

    证明:设矩阵 AFn×mA \in \mathbb F^{n \times m},其秩为 rr,则由矩阵的 CR\mathrm {CR} 分解,该矩阵必可拆分成两个矩阵之积:A=BCA = BC,其中 BFn×r,CFr×mB \in \mathbb F^{n \times r}, C \in \mathbb F^{r \times m}。设 B=(β1,β2,,βr),C=(γ1γ2γr)B = (\beta_1, \beta_2, \cdots, \beta_r), C = \begin {pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_r \end {pmatrix},则 A=BC=β1γ1+β2γ2++βrγrA = BC = \beta_1 \gamma_1 + \beta_2 \gamma_2 + \cdots + \beta_r \gamma_r,其中 βiγi\beta_i \gamma_i 表示一个秩为 11n×mn \times m 阶矩阵 (i=1,2,,r)(i = 1, 2, \cdots, r),得证。