#  矩阵的秩的性质 
定义 1 1 1  (相似矩阵) :对于两个 n n n   阶方阵 A , B A, B A , B  ,如果存在可逆 n n n   阶方阵 P P P  ,使得:
P − 1 A P = B P^{-1} A P = B
 P − 1 A P = B 
则称 A , B A, B A , B   矩阵相似,记作 A ∼ B A \sim B A ∼ B  。
 
矩阵秩的八大性质 :
0 ≤ r a n k   A m × n ≤ min  { m , n } 0 \le \mathrm {rank} \, A_{m \times n} \le \min \{ m, n \} 0 ≤ rank A m × n  ≤ min { m , n }  ;
 
r a n k   A T = r a n k   A \mathrm {rank} \, A^T = \mathrm {rank} \, A rank A T = rank A  ;
 
若 A ∼ B A \sim B A ∼ B  ,则 r a n k   A = r a n k   B \mathrm {rank} \, A = \mathrm {rank} \, B rank A = rank B  ;
 
若 P , Q P, Q P , Q   可逆,则 r a n k ( P A Q ) =   A \mathrm {rank} (PAQ) = \mathrm \, A rank ( P A Q ) = A  ;
 
max  { r a n k   A , r a n k   B } ≤ r a n k ( A , B ) ≤ r a n k   A + r a n k   B \max \{ \mathrm {rank} \, A, \mathrm {rank} \, B \} \le \mathrm {rank} (A, B) \le \mathrm {rank} \, A + \mathrm {rank} \, B max { rank A , rank B } ≤ rank ( A , B ) ≤ rank A + rank B  ;
特别地,当 B B B   为列向量时,有 r a n k   A ≤ r a n k ( A , B ) ≤ r a n k   A + 1 \mathrm {rank} \, A \le \mathrm {rank} (A, B) \le \mathrm {rank} \, A + 1 rank A ≤ rank ( A , B ) ≤ rank A + 1  。
 
r a n k ( A + B ) ≤ r a n k   A + r a n k   B \mathrm {rank} (A + B) \le \mathrm {rank} \, A + \mathrm {rank} \, B rank ( A + B ) ≤ rank A + rank B  ;
 
r a n k ( A B ) = min  { r a n k   A , r a n k   B } \mathrm {rank} (AB) = \min \{ \mathrm {rank} \, A , \mathrm {rank} \, B \} rank ( A B ) = min { rank A , rank B }  ;
 
若 A m × n B n × l = O A_{m \times n} B_{n \times l} = O A m × n  B n × l  = O  ,则 r a n k   A + r a n k   B ≤ n \mathrm {rank} \, A + \mathrm {rank} \, B \le n rank A + rank B ≤ n  。
 
 
前两条是显然的。
第三条,由矩阵相似的定义,P , P − 1 P, P^{-1} P , P − 1   都是可逆矩阵,可逆矩阵一定可以拆分为若干个初等方阵之和,因此 B , A B, A B , A   可以通过若干次初等行变换、初等列变换相互转化,因此 A , B A, B A , B   两个矩阵的秩相等。
第四条理由同第三条。
关于第五条,因为 A A A   的最高阶非零子式总是 ( A , B ) (A, B) ( A , B )   的非零子式,所以 r a n k   A ≤ r a n k ( A , B ) \mathrm {rank} \, A \le \mathrm {rank} (A, B) rank A ≤ rank ( A , B )  。同理有 r a n k   B ≤ r a n k ( A , B ) \mathrm {rank} \, B \le \mathrm {rank} (A, B) rank B ≤ rank ( A , B )  ,两式合起来,即为:
max  { r a n k   A , r a n k   B } ≤ r a n k ( A , B ) \max \{ \mathrm {rank} \, A, \mathrm {rank} \, B \} \le \mathrm {rank} (A, B)
 max { rank A , rank B } ≤ rank ( A , B ) 
设 r a n k   A = r , r a n k   B = s \mathrm {rank} \, A = r, \mathrm {rank} \, B = s rank A = r , rank B = s  ,把 A , B A, B A , B   分别作列变换化为列阶梯形 A 0 , B 0 A_0, B_0 A 0  , B 0   ,则 A 0 A_0 A 0    和 B 0 B_0 B 0    中分别含有 r r r   个和 s s s   个非零列,且 ( A , B ) (A, B) ( A , B )   也可通过初等列变换化为 ( A 0 , B 0 ) (A_0, B_0) ( A 0  , B 0  )  ,由于 ( A 0 , B 0 ) (A_0, B_0) ( A 0  , B 0  )   中只含有 r + s r + s r + s   个非零列,所以 r a n k ( A 0 , B 0 ) ≤ r + s \mathrm {rank} (A_0, B_0) \le r + s rank ( A 0  , B 0  ) ≤ r + s  ,而 r a n k ( A , B ) = r a n k ( A , B ) \mathrm {rank} (A, B) = \mathrm {rank} (A, B) rank ( A , B ) = rank ( A , B )  ,故 r a n k ( A , B ) ≤ r + s = r a n k   A + r a n k   B \mathrm {rank} (A, B) \le r + s = \mathrm {rank} \, A + \mathrm {rank} \, B rank ( A , B ) ≤ r + s = rank A + rank B  。
对于第六条,显然 ( A + B , B ) (A + B, B) ( A + B , B )   可以通过初等列变换转化为 ( A , B ) (A, B) ( A , B )  ,因此由第五条,r a n k ( A + B ) ≤ r a n k ( A + B , B ) = r a n k ( A , B ) ≤ r a n k   A + r a n k   B \mathrm {rank} (A + B) \le \mathrm {rank} (A + B, B) = \mathrm {rank} (A, B) \le \mathrm {rank} \, A + \mathrm {rank} \, B rank ( A + B ) ≤ rank ( A + B , B ) = rank ( A , B ) ≤ rank A + rank B  。
对于第七条,设 r a n k   A = r , r a n k   B = s \mathrm {rank} \, A = r, \mathrm {rank} \, B = s rank A = r , rank B = s  。又设 A A A   的行阶梯形为 A 0 A_0 A 0   ,B B B   的列阶梯形为 B 0 B_0 B 0   ,则存在可逆矩阵 P , Q P, Q P , Q   使 A = P A 0 , B = B 0 Q A = P A_0, B = B_0 Q A = P A 0  , B = B 0  Q  。因为 A B = P A 0 B 0 Q AB = P A_0 B_0 Q A B = P A 0  B 0  Q  ,所以 r a n k ( A B ) = r a n k ( A 0 B 0 ) \mathrm {rank} (AB) = \mathrm {rank} (A_0 B_0) rank ( A B ) = rank ( A 0  B 0  )  。因为 A 0 A_0 A 0    有 r r r   个非零行,B 0 B_0 B 0    有 s s s   个非零列,所以 A 0 B 0 A_0 B_0 A 0  B 0    至多有 r r r   个非零行和 s s s   个非零列,因此 r a n k ( A , B ) = r a n k ( A 0 , B 0 ) ≤ min  { r , s } = min  { r a n k   A , r a n k   B } \mathrm {rank} (A, B) = \mathrm {rank} (A_0, B_0) \le \min \{ r, s \} = \min \{ \mathrm {rank} \, A, \mathrm {rank} \, B \} rank ( A , B ) = rank ( A 0  , B 0  ) ≤ min { r , s } = min { rank A , rank B }  。
对于第八条,设 B = ( β 1 , β 2 , ⋯   , β l ) B = (\beta_1, \beta_2, \cdots, \beta_l) B = ( β 1  , β 2  , ⋯ , β l  )  ,因为 A B = A ( β 1 β 2 ⋯ β l ) = O AB = A \begin {pmatrix} \beta_1 & \beta_2 & \cdots & \beta_l \end {pmatrix} = O A B = A ( β 1   β 2   ⋯  β l   ) = O  ,所以 A β i = o , i = 1 , 2 , ⋯   , l A \beta_i = o, i = 1, 2, \cdots, l A β i  = o , i = 1 , 2 , ⋯ , l  ,即 β 1 , β 2 , ⋯   , β l \beta_1, \beta_2, \cdots, \beta_l β 1  , β 2  , ⋯ , β l    都是方程组 A x = O A x = O A x = O   的解向量,也即 β 1 , β 2 , ⋯   , β l \beta_1, \beta_2, \cdots, \beta_l β 1  , β 2  , ⋯ , β l    都是方程组 A x = o A x = o A x = o   的解向量组的部分组,而 A x = o Ax = o A x = o   的解向量组的秩是 n − r a n k   A n - \mathrm {rank} \, A n − rank A  ,所以 r a n k   B = r a n k ( β 1 , β 2 , ⋯   , β l ) ≤ n − r a n k   A \mathrm {rank} \, B = \mathrm {rank} (\beta_1, \beta_2, \cdots, \beta_l) \le n - \mathrm {rank} \, A rank B = rank ( β 1  , β 2  , ⋯ , β l  ) ≤ n − rank A  ,此即 r a n k   A + r a n k   B ≤ n \mathrm {rank} \, A + \mathrm {rank} \, B \le n rank A + rank B ≤ n  。
#  习题 
求下列矩阵的秩:
(1) A = ( 0 1 1 − 1 2 0 2 − 2 − 2 0 0 − 1 − 1 1 1 1 1 0 1 − 1 ) A = \begin {pmatrix} 0 & 1 & 1 & -1 & 2 \\ 0 & 2 & -2 & -2 & 0 \\ 0 & -1 & -1 & 1 & 1 \\ 1 & 1 & 0 & 1 & -1 \end {pmatrix} A =  0 0 0 1  1 2 − 1 1  1 − 2 − 1 0  − 1 − 2 1 1  2 0 1 − 1    ;
(2) n n n   阶方阵 ( 1 a ⋯ a a 1 ⋯ a ⋮ ⋮ ⋱ ⋮ a a ⋯ 1 ) \begin {pmatrix} 1 & a & \cdots & a \\ a & 1 & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & 1 \end {pmatrix}  1 a ⋮ a  a 1 ⋮ a  ⋯ ⋯ ⋱ ⋯  a a ⋮ 1    ,其中 a a a   为常数,n > 1 n > 1 n > 1  。
(1) 解:对该矩阵进行初等行变换:
( 0 1 1 − 1 2 0 2 − 2 − 2 0 0 − 1 − 1 1 1 1 1 0 1 − 1 ) → ( 1 1 0 1 − 1 0 − 1 − 1 1 1 0 0 − 4 0 2 0 0 0 0 3 )     \begin {pmatrix}
    0 & 1 & 1 & -1 & 2 \\
    0 & 2 & -2 & -2 & 0 \\
    0 & -1 & -1 & 1 & 1 \\
    1 & 1 & 0 & 1 & -1
    \end {pmatrix} \to \begin {pmatrix}
    1 & 1 & 0 & 1 & -1 \\
    0 & -1 & -1 & 1 & 1 \\
    0 & 0 & -4 & 0 & 2 \\
    0 & 0 & 0 & 0 & 3
    \end {pmatrix}
  0 0 0 1  1 2 − 1 1  1 − 2 − 1 0  − 1 − 2 1 1  2 0 1 − 1   →  1 0 0 0  1 − 1 0 0  0 − 1 − 4 0  1 1 0 0  − 1 1 2 3   
因此该矩阵秩为 4 4 4  。
 
(2) 解:当 a = 1 a = 1 a = 1   时,该方阵每一行相同,此时秩为 1 1 1  ;当 a ≠ 1 a \not = 1 a  = 1   时:
( 1 a ⋯ a a 1 ⋯ a ⋮ ⋮ ⋱ ⋮ a a ⋯ 1 ) = ∣ 1 a a ⋯ a 0 1 a ⋯ a 0 a 1 ⋯ a ⋮ ⋮ ⋮ ⋱ ⋮ 0 a a ⋯ 1 ∣ ( n + 1 ) × ( n + 1 ) = ∣ 1 a a ⋯ a − 1 1 − a 0 ⋯ 0 − 1 0 1 − a ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − 1 0 0 ⋯ 1 − a ∣ ( n + 1 ) × ( n + 1 ) = ∣ 1 − a 0 0 ⋯ 0 − 1 1 − a 0 ⋯ 0 − 1 0 1 − a ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − 1 0 0 ⋯ 1 − a ∣ ( n + 1 ) × ( n + 1 ) = ( 1 − a ) n + 1 ≠ 0     \begin {aligned}
    \begin {pmatrix}
    1 & a & \cdots & a \\
    a & 1 & \cdots & a \\
    \vdots & \vdots & \ddots & \vdots \\
    a & a & \cdots & 1
    \end {pmatrix} & = \begin {vmatrix}
    1 & a & a & \cdots & a \\
    0 & 1 & a & \cdots & a \\
    0 & a & 1 & \cdots & a \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    0 & a & a & \cdots & 1
    \end {vmatrix}_{(n + 1) \times (n + 1)} \\
    & = \begin {vmatrix}
    1 & a & a & \cdots & a \\
    -1 & 1 - a & 0 & \cdots & 0 \\
    -1 & 0 & 1 - a & \cdots & 0 \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    -1 & 0 & 0 & \cdots & 1 - a
    \end {vmatrix}_{(n + 1) \times (n + 1)} \\
    & = \begin {vmatrix}
    1 - a & 0 & 0 & \cdots & 0 \\
    -1 & 1 - a & 0 & \cdots & 0 \\
    -1 & 0 & 1 - a & \cdots & 0 \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    -1 & 0 & 0 & \cdots & 1 - a
    \end {vmatrix}_{(n + 1) \times (n + 1)} \\
    & = (1 - a)^{n + 1} \not = 0
    \end {aligned}
  1 a ⋮ a  a 1 ⋮ a  ⋯ ⋯ ⋱ ⋯  a a ⋮ 1    =  1 0 0 ⋮ 0  a 1 a ⋮ a  a a 1 ⋮ a  ⋯ ⋯ ⋯ ⋱ ⋯  a a a ⋮ 1   ( n + 1 ) × ( n + 1 )  =  1 − 1 − 1 ⋮ − 1  a 1 − a 0 ⋮ 0  a 0 1 − a ⋮ 0  ⋯ ⋯ ⋯ ⋱ ⋯  a 0 0 ⋮ 1 − a   ( n + 1 ) × ( n + 1 )  =  1 − a − 1 − 1 ⋮ − 1  0 1 − a 0 ⋮ 0  0 0 1 − a ⋮ 0  ⋯ ⋯ ⋯ ⋱ ⋯  0 0 0 ⋮ 1 − a   ( n + 1 ) × ( n + 1 )  = ( 1 − a ) n + 1  = 0  
因此此时方阵各行线性无关,其秩为 n n n  。
 
 
已知
A = ( 1 2 ⋯ n 2 3 ⋯ n + 1 ) , n ≥ 2 A = \begin {pmatrix}
1 & 2 & \cdots & n \\
2 & 3 & \cdots & n + 1
\end {pmatrix}, n \ge 2
 A = ( 1 2  2 3  ⋯ ⋯  n n + 1  ) , n ≥ 2 
求 det  ( A A T ) \det (A A^T) det ( A A T )   与 det  ( A T A ) \det (A^T A) det ( A T A )  。
提示 :先考虑行列式是否为 0 0 0  。
解:设 B = ( 1 , 2 , ⋯   , n ) , E = ( 1 , 1 , ⋯   , 1 ) B = (1, 2, \cdots, n), E = (1, 1, \cdots, 1) B = ( 1 , 2 , ⋯ , n ) , E = ( 1 , 1 , ⋯ , 1 )  ,则:
A = ( B B + E ) , A T = ( B T B T + E T ) A A T = ( B B T B ( B T + E T ) ( B + E ) B T ( B + E ) ( B T + E T ) ) B B T = ∑ i = 1 n i 2 B E T = ∑ i = 1 n i = E B T E E T = n det  ( A A T ) = ( ∑ i = 1 n i 2 ) ( ∑ i = 1 n i 2 + 2 ∑ i = 1 n i + n ) − ( ∑ i = 1 n i 2 + ∑ i = 1 n i ) 2 = n ∑ i = 1 n i 2 − ( ∑ i = 1 n i ) 2 = n 2 ( n 2 − 1 ) 12 det  ( A T A ) = det  ( A A T ) = n 2 ( n 2 − 1 ) 12     A = \begin {pmatrix}
    B \\ B + E
    \end {pmatrix}, A^T = \begin {pmatrix}
    B^T & B^T + E^T
    \end {pmatrix} \\
    A A^T = \begin {pmatrix}
    B B^T & B (B^T + E^T) \\
    (B + E) B^T & (B + E) (B^T + E^T)
    \end {pmatrix} \\
    BB^T = \sum_{i = 1}^n i^2 \\
    BE^T = \sum_{i = 1}^n i = EB^T \\
    EE^T = n \\
    \begin {aligned}
    \det (A A^T) & = \left( \sum_{i = 1}^n i^2 \right) \left( \sum_{i = 1}^n i^2 + 2 \sum_{i = 1}^n i + n \right) - \left( \sum_{i = 1}^n i^2 + \sum_{i = 1}^n i \right)^2 \\
    & = n \sum_{i = 1}^n i^2 - \left( \sum_{i = 1}^n i \right)^2 = \frac {n^2 (n^2 - 1)} {12}
    \end {aligned} \\
    \det (A^T A) = \det (A A^T) = \frac {n^2 (n^2 - 1)} {12}
 A = ( B B + E  ) , A T = ( B T  B T + E T  ) A A T = ( B B T ( B + E ) B T  B ( B T + E T ) ( B + E ) ( B T + E T )  ) B B T = i = 1 ∑ n  i 2 B E T = i = 1 ∑ n  i = E B T E E T = n det ( A A T )  = ( i = 1 ∑ n  i 2 ) ( i = 1 ∑ n  i 2 + 2 i = 1 ∑ n  i + n ) − ( i = 1 ∑ n  i 2 + i = 1 ∑ n  i ) 2 = n i = 1 ∑ n  i 2 − ( i = 1 ∑ n  i ) 2 = 12 n 2 ( n 2 − 1 )   det ( A T A ) = det ( A A T ) = 12 n 2 ( n 2 − 1 )  
 
 
设 A A A   是 4 × 3 4 \times 3 4 × 3   阶矩阵,r a n k ( A ) = 2 , B = ( 2 0 1 1 − 1 6 − 2 0 2 ) \mathrm {rank} (A) = 2, B = \begin {pmatrix} 2 & 0 & 1 \\ 1 & -1 & 6 \\ -2 & 0 & 2 \end {pmatrix} rank ( A ) = 2 , B =  2 1 − 2  0 − 1 0  1 6 2    ,求 r a n k ( A B ) \mathrm {rank} (AB) rank ( A B )  。
解:将 B B B   经过一系列初等行变换和初等列变换可得到单位矩阵 I ( 3 ) I_{(3)} I ( 3 )   ,则 B B B   为满秩矩阵,且可与一系列初等方阵通过矩阵乘法转化为 I ( 3 ) I_{(3)} I ( 3 )   。设 P = P 1 P 2 ⋯ P s , Q = Q 1 Q 2 ⋯ Q r P = P_1 P_2 \cdots P_s, Q = Q_1 Q_2 \cdots Q_r P = P 1  P 2  ⋯ P s  , Q = Q 1  Q 2  ⋯ Q r   ,且 P B Q = I ( 3 ) PBQ = I_{(3)} PBQ = I ( 3 )   ,则 P , Q P, Q P , Q   可逆,且 B = P − 1 I ( 3 ) Q ( − 1 ) = P − 1 Q − 1 B = P^{-1} I_{(3)} Q^{(-1)} = P^{-1} Q^{-1} B = P − 1 I ( 3 )  Q ( − 1 ) = P − 1 Q − 1   也是若干初等方阵相乘的结果。 
则 A B = A P − 1 Q − 1 AB = A P^{-1} Q^{-1} A B = A P − 1 Q − 1   为 A A A   与若干初等方阵右乘,相当于对 A A A   进行若干次初等列变换,不改变 A A A   的秩,因此 r a n k ( A B ) = 2 \mathrm {rank} (AB) = 2 rank ( A B ) = 2  。
 
 
设方阵 A A A   满足 A 2 − 3 A + 2 E = O A^2 - 3A + 2E = O A 2 − 3 A + 2 E = O  ,证明:r a n k ( A − E ) + r a n k ( A − 2 E ) = n \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) = n rank ( A − E ) + rank ( A − 2 E ) = n  。
证明:( A − E ) ( A − 2 E ) = O (A - E) (A - 2E) = O ( A − E ) ( A − 2 E ) = O  ,由矩阵秩的性质可知:
r a n k ( A − E ) + r a n k ( A − 2 E ) ≤ n     \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) \le n
 rank ( A − E ) + rank ( A − 2 E ) ≤ n 
又由于 r a n k ( A − E − ( A − 2 E ) ) = r a n k ( E ) = n ≤ r a n k ( A − E ) + r a n k ( A − 2 E ) \mathrm {rank} (A - E - (A - 2E)) = \mathrm {rank} (E) = n \le \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) rank ( A − E − ( A − 2 E )) = rank ( E ) = n ≤ rank ( A − E ) + rank ( A − 2 E )  ,因此 r a n k ( A − E ) + r a n k ( A − 2 E ) = n \mathrm {rank} (A - E) + \mathrm {rank} (A - 2E) = n rank ( A − E ) + rank ( A − 2 E ) = n  。
 
 
设 A A A   为 n n n   阶方阵,A ∗ A^* A ∗   为其伴随矩阵,证明:
r a n k ( A ∗ ) = { n , r a n k   A = n ( 1 ) 1 , r a n k   A = n − 1 ( 2 ) 0 , r a n k   A < n − 1 ( 3 ) \mathrm {rank} (A^*) = \begin {cases}
n, & \mathrm {rank} \, A = n & (1) \\
1, & \mathrm {rank} \, A = n - 1 & (2) \\
0, & \mathrm {rank} \, A < n - 1 & (3)
\end {cases}
 rank ( A ∗ ) = ⎩ ⎨ ⎧  n , 1 , 0 ,  rank A = n rank A = n − 1 rank A < n − 1  ( 1 ) ( 2 ) ( 3 )  
提示 :(2) 考察方程组 A A ∗ = 0 A A^* = 0 A A ∗ = 0  ;(3) 利用 A A A   的行列式秩的定义。
证明:由伴随矩阵定义可知:A A ∗ = ∣ A ∣ I ( n ) A A^* = |A| I_{(n)} A A ∗ = ∣ A ∣ I ( n )   。 
当 r a n k   A = n \mathrm {rank} \, A = n rank A = n   时,∣ A ∣ ≠ 0 |A| \not = 0 ∣ A ∣  = 0  ,因此 det  ( A A ∗ ) = ∣ A ∣ ≠ 0 \det (A A^*) = |A| \not = 0 det ( A A ∗ ) = ∣ A ∣  = 0  ,因此 det  A ∗ ≠ 0 \det A^* \not = 0 det A ∗  = 0  ,即 r a n k   A ∗ = n \mathrm {rank} \, A^* = n rank A ∗ = n  。 
当 r a n k   A = n − 1 \mathrm {rank} \, A = n - 1 rank A = n − 1   时,设 A ∗ = ( α 1 , α 2 , ⋯   , α n ) A^* = (\alpha_1, \alpha_2, \cdots, \alpha_n) A ∗ = ( α 1  , α 2  , ⋯ , α n  )  ,由 A A ∗ = A ( α 1 α 2 ⋯ α n ) = O A A^* = A \begin {pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end {pmatrix} = O A A ∗ = A ( α 1   α 2   ⋯  α n   ) = O   可得:A α i = o , i = 1 , 2 , ⋯   , n A \alpha_i = o, i = 1, 2, \cdots, n A α i  = o , i = 1 , 2 , ⋯ , n  ,即 α 1 , ⋯   , α n \alpha_1, \cdots, \alpha_n α 1  , ⋯ , α n    均为方程 A x = o Ax = o A x = o   的解向量,又该方程的解向量组的秩为 n − r a n k   A = 1 n - \mathrm {rank} \, A = 1 n − rank A = 1  ,因此 r a n k   A ∗ = r a n k ( α 1 , ⋯   , α n ) = 1 \mathrm {rank} \, A^* = \mathrm {rank} (\alpha_1, \cdots, \alpha_n) = 1 rank A ∗ = rank ( α 1  , ⋯ , α n  ) = 1  。 
当 r a n k   A < n − 1 \mathrm {rank} \, A < n - 1 rank A < n − 1   时,A A A   的 n − 1 n - 1 n − 1   阶子式的行列式值也为 0 0 0  ,即对于 ∀   i , j ∈ [ 1 , n ] \forall \, i, j \in [1, n] ∀ i , j ∈ [ 1 , n ]  ,都有 A i , j = 0 A_{i, j} = 0 A i , j  = 0  ,因此 A ∗ = O A^* = O A ∗ = O  ,即 r a n k   A ∗ = 0 \mathrm {rank} \, A^* = 0 rank A ∗ = 0  。
 
 
设方阵 A A A   的秩为 1 1 1  ,求证:A n = ( t r   A ) n − 1 A A^n = (\mathrm {tr} \, A)^{n - 1} A A n = ( tr A ) n − 1 A  。
提示 :秩为 1 1 1   的矩阵一定可以写成一个列向量 β \beta β   乘一个行向量 α \alpha α  ,t r   A = t r ( β α ) = t r ( α β ) \mathrm {tr} \, A = \mathrm {tr} (\beta \alpha) = \mathrm {tr} (\alpha \beta) tr A = tr ( β α ) = tr ( α β )  。
证明:由于 A A A   的秩为 1 1 1  ,设 α = ( a 1 a 2 ⋮ a n ) , β = ( b 1 b 2 ⋯ b n ) \alpha = \begin {pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end {pmatrix}, \beta = \begin {pmatrix} b_1 & b_2 & \cdots & b_n \end {pmatrix} α =  a 1  a 2  ⋮ a n    , β = ( b 1   b 2   ⋯  b n   )  ,则 A A A   一定能表示为 A = α β A = \alpha \beta A = α β  ,且 β α = a 1 b 1 + a 2 b 2 + ⋯ + a n b n \beta \alpha = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n β α = a 1  b 1  + a 2  b 2  + ⋯ + a n  b n   。 
设 A = ( c i , j ) n × n A = (c_{i, j})_{n \times n} A = ( c i , j  ) n × n   ,则 c i , i = a i b i c_{i, i} = a_i b_i c i , i  = a i  b i   ,所以 β α = c 1 , 1 + ⋯ + c n , n = t r   A \beta \alpha = c_{1, 1} + \cdots + c_{n, n} = \mathrm {tr} \, A β α = c 1 , 1  + ⋯ + c n , n  = tr A  。于是有:
A n = ( α β ) n = α ( β α ) n − 1 β = α ( t r   A ) n − 1 β = ( t r   A ) n − 1 A     \begin {aligned}
    A^n &= (\alpha \beta)^n \\
    & = \alpha (\beta \alpha)^{n - 1} \beta \\
    & = \alpha (\mathrm {tr} \, A)^{n - 1} \beta \\
    & = (\mathrm {tr} \, A)^{n - 1} A
    \end {aligned}
 A n  = ( α β ) n = α ( β α ) n − 1 β = α ( tr A ) n − 1 β = ( tr A ) n − 1 A  
 
 
证明:任意一个秩为 r r r   的矩阵都可以表示成 r r r   个秩为 1 1 1   的矩阵之和。
提示 :利用矩阵的 C R \mathrm {CR} CR   分解,以及矩阵乘法的视角。
证明:设矩阵 A ∈ F n × m A \in \mathbb F^{n \times m} A ∈ F n × m  ,其秩为 r r r  ,则由矩阵的 C R \mathrm {CR} CR   分解,该矩阵必可拆分成两个矩阵之积:A = B C A = BC A = BC  ,其中 B ∈ F n × r , C ∈ F r × m B \in \mathbb F^{n \times r}, C \in \mathbb F^{r \times m} B ∈ F n × r , C ∈ F r × m  。设 B = ( β 1 , β 2 , ⋯   , β r ) , C = ( γ 1 γ 2 ⋮ γ r ) B = (\beta_1, \beta_2, \cdots, \beta_r), C = \begin {pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_r \end {pmatrix} B = ( β 1  , β 2  , ⋯ , β r  ) , C =  γ 1  γ 2  ⋮ γ r     ,则 A = B C = β 1 γ 1 + β 2 γ 2 + ⋯ + β r γ r A = BC = \beta_1 \gamma_1 + \beta_2 \gamma_2 + \cdots + \beta_r \gamma_r A = BC = β 1  γ 1  + β 2  γ 2  + ⋯ + β r  γ r   ,其中 β i γ i \beta_i \gamma_i β i  γ i    表示一个秩为 1 1 1   的 n × m n \times m n × m   阶矩阵 ( i = 1 , 2 , ⋯   , r ) (i = 1, 2, \cdots, r) ( i = 1 , 2 , ⋯ , r )  ,得证。