# 几个问题

我们先来看几个问题:

11. 求向量 e1=(1,0,0)e_1 = (1, 0, 0)F3F^3 的基 T={α1=(1,1,1),α2=(1,2,3),α3=(1,4,9)}T = \{ \alpha_1 = (1, 1, 1), \alpha_2 = (1, 2, 3), \alpha_3 = (1, 4, 9) \} 下的坐标。

解:设 e1e_1TT 下的坐标为 (x1,x2,x3)(x_1, x_2, x_3) 满足 e1=x1α1+x2α2+x3α3e_1 = x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 转化为列向量形式 e1=x1a1+x2a2+x3a3e_1 = x_1a_1 + x_2a_2 + x_3a_3AX=e1AX = e_1 由方程增广矩阵求解.

(A,e1)=(111112401300)(10030105200112)(A, e_1) = \begin {pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 0 \\ 1 & 3 & 0 & 0 \end {pmatrix} \rightarrow \begin {pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & - \frac 5 2 \\ 0 & 0 & 1 & \frac 1 2 \end {pmatrix}

所得方程组的解 X=(3,52,12)X = (3, - \dfrac 5 2, \dfrac 1 2) 就是所求坐标。

22. 参考 11,求自然基向量 ϵ1=(1,0,0),ϵ2=(0,1,0),ϵ3=(0,0,1)\epsilon_1 = (1, 0, 0), \epsilon_2 = (0, 1, 0), \epsilon_3 = (0, 0, 1)F3F^3 的基 T={α1=(1,1,1),α2=(1,2,3),α3=(1,4,9)}T = \{ \alpha_1 = (1, 1, 1), \alpha_2 = (1, 2, 3), \alpha_3 = (1, 4, 9) \} 下的坐标。

解:将 66 个向量写成列向量排成 MM,经过例 11 中的初等行变换化为最简阶梯形矩阵

(A,e1,e2,e3)=(111100124010139001)(1003310105243200112112)(A, e_1, e_2, e_3) = \begin {pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 4 & 0 & 1 & 0 \\ 1 & 3 & 9 & 0 & 0 & 1 \end {pmatrix} \rightarrow \begin {pmatrix} 1 & 0 & 0 & 3 & -3 & 1 \\ 0 & 1 & 0 & - \frac 5 2 & 4 & - \frac 3 2 \\ 0 & 0 & 1 & \frac 1 2 & -1 & \frac 1 2 \end {pmatrix}

所得后三列为 ϵ1,ϵ2,ϵ3\epsilon_1, \epsilon_2, \epsilon_3TT 下的坐标 (3,52,12),(3,4,1),(1,32,12)(3, - \dfrac 5 2, \dfrac 1 2), (-3, 4, -1), (1, - \dfrac 3 2, \dfrac 1 2)

33. 根据 22,求向量 β=(y1,y2,y3)\beta = (y_1, y_2, y_3)F3F^3 的基 T={α1=(1,1,1),α2=(1,2,3),α3=(1,4,9)}T = \{ \alpha_1 = (1, 1, 1), \alpha_2 = (1, 2, 3), \alpha_3 = (1, 4, 9) \} 下的坐标。

解:已知自然基向量在 TT 下的坐标,而 β\beta 是自然基向量的线性组合 β=y1ϵ1+y2ϵ2+y3ϵ3\beta = y_1 \epsilon_1 + y_2 \epsilon_2 + y_3 \epsilon_3β\betaTT 下的坐标也就是 ϵ1,ϵ2,ϵ3\epsilon_1, \epsilon_2, \epsilon_3TT 下的坐标的相应的线性组合

y1(3,52,12)+y2(3,4,1)+y3(1,32,12)=(3y13y2+y3,52y1+4y232y3,12y1y2+12y3)y_1 (3, - \frac 5 2, \frac 1 2) + y_2 (-3, 4, -1) + y_3 (1, - \frac 3 2, \frac 1 2) = (3y_1 - 3y_2 + y_3, - \frac 5 2 y_1 + 4y_2 - \frac 3 2 y_3, \frac 1 2 y_1 - y_2 + \frac 1 2 y_3)

# 坐标变换公式

VV 是数域 FF 上有限维线性空间,它的两组基是 M1={α1,,αn},M2={β1,,βn}M_1 = \{ \alpha_1, \cdots, \alpha_n \}, M_2 = \{ \beta_1, \cdots, \beta_n \}. 设第二组基 M2M_2 中的每个向量 βj(1jn)\beta_j (1 \le j \le n) 在第一组基 M1M_1 下的坐标为

Πj=(p1,j,,pn,j)T\Pi_j = \begin {pmatrix} p_{1, j}, \cdots, p_{n, j} \end {pmatrix}^T

依次以这些坐标为列向量组成矩阵:

P=(Π1Πn)=(p1,1p1,npn,1pn,m)P = \begin {pmatrix} \Pi_1 & \cdots & \Pi_n \end {pmatrix} = \begin {pmatrix} p_{1, 1} & \cdots & p_{1, n} \\ \vdots & \ddots & \vdots \\ p_{n, 1} & \cdots & p_{n, m} \end {pmatrix}

PP 称为基 M1M_1M2M_2过渡矩阵。它可以由等式 (β1,,βn)=(α1,,αn)P(\beta_1, \cdots, \beta_n) = (\alpha_1, \cdots, \alpha_n) P 定义,称为 基变换公式

M1={α1,,αn},M2={β1,,βn}M_1 = \{ \alpha_1, \cdots, \alpha_n \}, M_2 = \{ \beta_1, \cdots, \beta_n \}VV 的基,PPM1M_1M2M_2 的过渡方阵。设 αV\alpha \in V 在基 M1,M2M_1, M_2 下的坐标分别是 X=(x1,,xn),Y=(y1,,yn)X = (x_1, \cdots, x_n), Y = (y_1, \cdots, y_n). 从而 α=y1β1++ynβn\alpha = y_1 \beta_1 + \cdots + y_n \beta_n,将等式两端用坐标代替,得到坐标等式:

X=y1Π1++ynΠn=(Π1Πn)(y1yn)T=PYX = y_1 \Pi_1 + \cdots + y_n \Pi_n = \begin {pmatrix} \Pi_1 & \cdots & \Pi_n \end {pmatrix} \begin {pmatrix} y_1 & \cdots & y_n \end {pmatrix}^T = PY

(x1xn)T=(p1,1p1,npn,1pn,n)(y1yn)T\begin {pmatrix} x_1 & \cdots & x_n \end {pmatrix}^T = \begin {pmatrix} p_{1, 1} & \cdots & p_{1, n} \\ \vdots & \ddots & \vdots \\ p_{n, 1} & \cdots & p_{n, n} \end {pmatrix} \begin {pmatrix} y_1 & \cdots & y_n \end {pmatrix}^T

称为 坐标变换公式,也就是一个向量在两组不同基下的坐标 X,YX, Y 之间的关系。

44. 描述平面直角坐标系中方程 2x2+4xy+5y2=62x^2 + 4xy + 5y^2 = 6 的图像曲线的形状。

解:将平面直角坐标系绕原点旋转 α\alpha 角,将方程化为标准型。

自然基 {e1,e2}\{ e_1, e_2 \} 绕原点旋转 α\alpha 角为 {e1,e2}\{ e_1', e_2' \} 仍为一组基,过渡矩阵为

(cosαsinαsinαcosα)\begin {pmatrix} \cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha \end {pmatrix}

因此有坐标变换公式

(xy)=x(cosαsinα)+y(sinαcosα)\begin {pmatrix} x \\ y \end {pmatrix} = x' \begin {pmatrix} \cos \alpha \\ \sin \alpha \end {pmatrix} + y' \begin {pmatrix} - \sin \alpha \\ \cos \alpha \end {pmatrix}

{x=xcosαysinαy=xsinα+ycosα\begin {cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end {cases}

代入曲线方程并整理得:

x2(72+2sin2α32cos2α)+xy(3sin2α+4cos2α)+y2(722sin2α+32cos2α)=6x'^2 \left( \frac 7 2 + 2 \sin 2 \alpha - \frac 3 2 \cos 2 \alpha \right) + x'y' \left( 3 \sin 2 \alpha + 4 \cos 2 \alpha \right) + y'^2 \left( \frac 7 2 - 2 \sin 2 \alpha + \frac 3 2 \cos 2 \alpha \right) = 6

选择 α\alpha 使 3sin2α+4cos2α=03 \sin 2 \alpha + 4 \cos 2 \alpha = 0,即 tan2α=43\tan 2 \alpha = - \dfrac 4 3. 选 2α2 \alpha 在第二象限,

cos2α=11+tan22α=35,sin2α=45\cos 2 \alpha = - \frac 1 {\sqrt {1 + \tan^2 2 \alpha}} = - \frac 3 5, \sin 2 \alpha = \frac 4 5

代入曲线整理得

6x2+y2=6,x2+y26=16x'^2 + y'^2 = 6, x'^2 + \frac {y'^2} 6 = 1

图像曲线为椭圆,长半轴为 6\sqrt 6,短半轴为 11.

# 习题

  1. R3\R^3 中的向量 α1=(3,1,0),α2=(6,3,2),α3=(1,3,5)\alpha_1 = (3, 1, 0), \alpha_2 = (6, 3, 2), \alpha_3 = (1, 3, 5) 组成向量组 SS.

    (1) 证明 SSR3\R^3 的基。

    (2) 求向量 β=(2,1,2)\beta = (2, -1, 2) 在基 SS 下的坐标。

    (3) 求自然基底 ϵ1=(1,0,0),ϵ2=(0,1,0),ϵ3=(0,0,1)\epsilon_1 = (1, 0, 0), \epsilon_2 = (0, 1, 0), \epsilon_3 = (0, 0, 1) 到基 SS 的过渡矩阵。

    (1) 证明:将 SS 中向量排成列向量矩阵,并进行如下初等行变换:

    (361133025)13(1)+(2)(3610183025)2(2)+(3)(36101830013) \begin {pmatrix} 3 & 6 & 1 \\ 1 & 3 & 3 \\ 0 & 2 & 5 \end {pmatrix} \quad \xrightarrow {- \frac 1 3 (1) + (2)} \quad \begin {pmatrix} 3 & 6 & 1 \\ 0 & 1 & \frac 8 3 \\ 0 & 2 & 5 \end {pmatrix} \quad \xrightarrow {-2(2) + (3)} \quad \begin {pmatrix} 3 & 6 & 1 \\ 0 & 1 & \frac 8 3 \\ 0 & 0 & - \frac 1 3 \end {pmatrix}

    即向量组 SS 线性无关。则在 R3\R^3 中,SS 的三个向量构成一组基。

    (2) 解:表示出方程增广矩阵,并进行初等行变换:

    (361213310252)13(1)+(2)(36120183530252)2(2)+(3)(36120183530013163)13(1),3(3)(12132301835300116)13(3)+(1),83(3)++(2)(12060104100116)2(2)+(1)(100760104100116) \begin {pmatrix} 3 & 6 & 1 & 2 \\ 1 & 3 & 3 & -1 \\ 0 & 2 & 5 & 2 \end {pmatrix} \quad \xrightarrow {- \frac 1 3 (1) + (2)} \quad \begin {pmatrix} 3 & 6 & 1 & 2 \\ 0 & 1 & \frac 8 3 & - \frac 5 3 \\ 0 & 2 & 5 & 2 \end {pmatrix} \quad \xrightarrow {-2(2) + (3)} \quad \begin {pmatrix} 3 & 6 & 1 & 2 \\ 0 & 1 & \frac 8 3 & - \frac 5 3 \\ 0 & 0 & - \frac 1 3 & \frac {16} 3 \end {pmatrix} \quad \xrightarrow {\frac 1 3 (1), -3(3)} \quad \begin {pmatrix} 1 & 2 & \frac 1 3 & \frac 2 3 \\ 0 & 1 & \frac 8 3 & - \frac 5 3 \\ 0 & 0 & 1 & -16 \end {pmatrix} \quad \xrightarrow {- \frac 1 3 (3) + (1), - \frac 8 3 (3) + +(2)} \quad \begin {pmatrix} 1 & 2 & 0 & 6 \\ 0 & 1 & 0 & 41 \\ 0 & 0 & 1 & -16 \end {pmatrix} \quad \xrightarrow {-2(2) + (1)} \quad \begin {pmatrix} 1 & 0 & 0 & -76 \\ 0 & 1 & 0 & 41 \\ 0 & 0 & 1 & -16 \end {pmatrix}

    β\beta 在基 SS 下的坐标为 (76,41,16)(-76, 41, -16).

    (3) 解:容易看出自然基底到基 SS 的过渡矩阵为

    (361133025) \begin {pmatrix} 3 & 6 & 1 \\ 1 & 3 & 3 \\ 0 & 2 & 5 \end {pmatrix}

  2. 在四维向量空间 R4\R^4 中,给出

    I\text {I} 组基:

    α1=(1,1,1,1),α2=(1,1,1,1),α3=(1,1,1,1),α4=(1,1,1,1),\alpha_1 = (1, 1, 1, 1), \alpha_2 = (1, 1, -1, -1), \alpha_3 = (1, -1, 1, -1), \alpha_4 = (1, -1, -1, 1),

    II\text {II} 组基:

    β1=(1,1,0,1),β2=(2,1,3,1),β3=(1,1,0,0),β4=(0,1,1,1)\beta_1 = (1, 1, 0, 1), \beta_2 = (2, 1, 3, 1), \beta_3 = (1, 1, 0, 0), \beta_4 = (0, 1, -1, -1)

    求:

    (1) 从第 I\text {I} 组基到第 II\text {II} 组基的过渡矩阵。

    (2) ξ=(1,0,0,1)\xi = (1, 0, 0, -1) 在第 II\text {II} 组基下的坐标。

    (1) 解:写成方程增广矩阵,并进行如下初等行变换:

    (11111210111111111111030111111101)(1)+(2),(1)+(3),(1)+(4)(11111210002201010202111102200111)(2,3)(11111210020211110022010102200111)(2)+(4)(11111210020211110022010100221200)(3)+(4)(11111210020211110022010100041101)12(2),12(3),14(4)(11111210010112121212001101201200011414014)(4)+(1),(4)+(2),(4)+(3)(111034941140100141412340010143401400011414014)(3)+(1)(11001321120100141412340010143401400011414014)(2)+(1)(1000347412140100141412340010143401400011414014) \begin {pmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 0 & 3 & 0 & -1 \\ 1 & -1 & -1 & 1 & 1 & 1 & 0 & -1 \end {pmatrix} \quad \xrightarrow {-(1) + (2), -(1) + (3), -(1) + (4)} \quad \begin {pmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 \\ 0 & 0 & -2 & -2 & 0 & -1 & 0 & 1 \\ 0 & -2 & 0 & -2 & -1 & 1 & -1 & -1 \\ 0 & -2 & -2 & 0 & 0 & -1 & -1 & -1 \end {pmatrix} \quad \xrightarrow {(2, 3)} \quad \begin {pmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 \\ 0 & -2 & 0 & -2 & -1 & 1 & -1 & -1 \\ 0 & 0 & -2 & -2 & 0 & -1 & 0 & 1 \\ 0 & -2 & -2 & 0 & 0 & -1 & -1 & -1 \end {pmatrix} \quad \xrightarrow {-(2) + (4)} \quad \begin {pmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 \\ 0 & -2 & 0 & -2 & -1 & 1 & -1 & -1 \\ 0 & 0 & -2 & -2 & 0 & -1 & 0 & 1 \\ 0 & 0 & -2 & 2 & 1 & -2 & 0 & 0 \end {pmatrix} \quad \xrightarrow {-(3) + (4)} \quad \begin {pmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 \\ 0 & -2 & 0 & -2 & -1 & 1 & -1 & -1 \\ 0 & 0 & -2 & -2 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 4 & 1 & -1 & 0 & -1 \end {pmatrix} \quad \xrightarrow {- \frac 1 2 (2), - \frac 1 2 (3), \frac 1 4 (4)} \quad \begin {pmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 & \frac 1 2 & - \frac 1 2 & \frac 1 2 & \frac 1 2 \\ 0 & 0 & 1 & 1 & 0 & \frac 1 2 & 0 & - \frac 1 2 \\ 0 & 0 & 0 & 1 & \frac 1 4 & - \frac 1 4 & 0 & - \frac 1 4 \end {pmatrix} \quad \xrightarrow {-(4) + (1), -(4) + (2), -(4) + (3)} \quad \begin {pmatrix} 1 & 1 & 1 & 0 & \frac 3 4 & \frac 9 4 & 1 & \frac 1 4 \\ 0 & 1 & 0 & 0 & \frac 1 4 & - \frac 1 4 & \frac 1 2 & \frac 3 4 \\ 0 & 0 & 1 & 0 & - \frac 1 4 & \frac 3 4 & 0 & - \frac 1 4 \\ 0 & 0 & 0 & 1 & \frac 1 4 & - \frac 1 4 & 0 & - \frac 1 4 \end {pmatrix} \quad \xrightarrow {-(3) + (1)} \quad \begin {pmatrix} 1 & 1 & 0 & 0 & 1 & \frac 3 2 & 1 & \frac 1 2 \\ 0 & 1 & 0 & 0 & \frac 1 4 & - \frac 1 4 & \frac 1 2 & \frac 3 4 \\ 0 & 0 & 1 & 0 & - \frac 1 4 & \frac 3 4 & 0 & - \frac 1 4 \\ 0 & 0 & 0 & 1 & \frac 1 4 & - \frac 1 4 & 0 & - \frac 1 4 \end {pmatrix} \quad \xrightarrow {-(2) + (1)} \quad \begin {pmatrix} 1 & 0 & 0 & 0 & \frac 3 4 & \frac 7 4 & \frac 1 2 & - \frac 1 4 \\ 0 & 1 & 0 & 0 & \frac 1 4 & - \frac 1 4 & \frac 1 2 & \frac 3 4 \\ 0 & 0 & 1 & 0 & - \frac 1 4 & \frac 3 4 & 0 & - \frac 1 4 \\ 0 & 0 & 0 & 1 & \frac 1 4 & - \frac 1 4 & 0 & - \frac 1 4 \end {pmatrix}

    即过渡矩阵为

    (347412141414123414340141414014) \begin {pmatrix} \frac 3 4 & \frac 7 4 & \frac 1 2 & - \frac 1 4 \\ \frac 1 4 & - \frac 1 4 & \frac 1 2 & \frac 3 4 \\ -\frac 1 4 & \frac 3 4 & 0 & - \frac 1 4 \\ \frac 1 4 & - \frac 1 4 & 0 & - \frac 1 4 \end {pmatrix}

    (2) 解:写作方程组的增广矩阵,并进行如下初等行变换:

    (12101111100301011011)(1)+(2),(1)+(4)(12101010110301001112)3(2)+(3),(2)+(4)(12101010110002300121)(3,4)(12101010110012100023)(2),(3),12(4)(121010101100121000132)(4)+(2),2(4)+(3)(1210101001200104000132)(3)+(1)(1200301001200104000132)2(2)+(1)(1000201001200104000132) \begin {pmatrix} 1 & 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 3 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 & -1 \end {pmatrix} \quad \xrightarrow {-(1) + (2), -(1) + (4)} \quad \begin {pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & -1 & 0 & 1 & -1 \\ 0 & 3 & 0 & -1 & 0 \\ 0 & -1 & -1 & -1 & -2 \end {pmatrix} \quad \xrightarrow {3(2) + (3), -(2) + (4)} \quad \begin {pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 & -3 \\ 0 & 0 & -1 & -2 & -1 \end {pmatrix} \quad \xrightarrow {(3, 4)} \quad \begin {pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & -1 & 0 & 1 & -1 \\ 0 & 0 & -1 & -2 & -1 \\ 0 & 0 & 0 & 2 & -3 \end {pmatrix} \quad \xrightarrow {-(2), -(3), \frac 1 2 (4)} \quad \begin {pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & - \frac 3 2 \end {pmatrix} \quad \xrightarrow {(4) + (2), -2(4) + (3)} \quad \begin {pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & - \frac 1 2 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & - \frac 3 2 \end {pmatrix} \quad \xrightarrow {-(3) + (1)} \quad \begin {pmatrix} 1 & 2 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 & - \frac 1 2 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & - \frac 3 2 \end {pmatrix} \quad \xrightarrow {-2(2) + (1)} \quad \begin {pmatrix} 1 & 0 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 & - \frac 1 2 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & - \frac 3 2 \end {pmatrix}

    ξ\xi 在第 II\text {II} 组基下的坐标为 (2,12,4,32)(-2, - \dfrac 1 2, 4, - \dfrac 3 2).