# 排列

定义 11(排列):由 1,2,,n1, 2, \cdots, n 按任意顺序重新排列而成的有序数组 (j1,j2,,jn)(j_1, j_2, \cdots, j_n) 称为一个 nn 元排列。

注意

  1. nn 元排列的总数为 n!n!

  2. 1,2,,n1, 2, \cdots, n 按从小到大的顺序得到的排列 (12n)(1 2 \cdots n) 称为 标准排列

  3. 在任意一个排列 (j1j2jn)(j_1 j_2 \cdots j_n) 中,可能出现顺序 “颠倒” 的情况:p<qp < q 然而 jp>jqj_p > j_q,也就是较大的数 jpj_p 反而排在较小的数 jqj_q 的前面。每出现一对这样的 (jp,jq)(j_p, j_q) 称为这个排列的一个 逆序

排列 (j1j2jn)(j_1 j_2 \cdots j_n) 中的逆序的个数称为这个排列的 逆序数,记作 τ(j1j2jn)\tau (j_1 j_2 \cdots j_n)。逆序数为偶数的排列称为 偶排列,逆序数为奇数的排列称为 奇排列

定义 22(对换):将排列 (j1j2jn)(j_1 j_2 \cdots j_n) 中的某两个数码 jp,jqj_p, j_q 互相交换位置,称为这个排列的一个 对换

定理 11:任意一个排列经过任一次对换,必改变奇偶性。

证明:首先考虑 相邻 两个数 ki,ki+1k_i, k_{i + 1} 的对换。

ki>ki+1k_i > k_{i + 1} 则对换后逆序数减少 11;若 ki<ki+1k_i < k_{i + 1} 则对换后逆序数增加 11。无论哪种情形,奇偶性都改变

一般情形,不相邻对换可通过相邻对换来实现

不妨设 i<ji < j,将 kik_iki+1k_{i + 1} 对换,再与 ki+2k_{i + 2} 对换,换了 jij - i 次后再将 kjk_jkj1k_{j - 1} 对换,再与 kj2k_{j - 2} 对换,经过了 ji1j - i - 1 次后,kik_ikjk_j 实现对换,一共进行了 2(ji)12(j - i) - 1 次相邻对换,因此 奇偶性发生改变

定理 22:每个排列 (j1j2jn)(j_1 j_2 \cdots j_n) 都可以经过有限次对换变成标准排列 (12n)(1 2 \cdots n)。同一排列 (j1j2jn)(j_1 j_2 \cdots j_n) 变成标准排列经过的对换次数 ss 不唯一,但 奇偶性唯一,并且与排列的奇偶性相同。

对于排列 (j1j2jn)(j_1 j_2 \cdots j_n),规定:

sgn(j1j2jn)=(1)τ(j1j2jn)={1(j1j2jn)是偶排列;1(j1j2jn)是奇排列;\mathrm {sgn} (j_1 j_2 \cdots j_n) = (-1)^{\tau (j_1 j_2 \cdots j_n)} = \begin {cases} 1 & 当 (j_1 j_2 \cdots j_n) 是偶排列;\\ -1 & 当 (j_1 j_2 \cdots j_n) 是奇排列;\\ \end {cases}

# n 阶行列式的定义

n2n^2 个数 ai,j(i,j=1,2,,n)a_{i, j} (i, j = 1, 2, \cdots, n) 排成 nnnn 列的形式,按如下方式计算:

Δ=a1,1a1,2a1,na2,1a2,2a2,nan,1an,2an,n=(i1i2in)sgn(i1i2in)a1,i1a2,i2an,in\Delta = \begin {vmatrix} a_{1, 1} & a_{1, 2} & \cdots & a_{1, n} \\ a_{2, 1} & a_{2, 2} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & a_{n, 2} & \cdots & a_{n, n} \end {vmatrix} = \sum_{(i_1 i_2 \cdots i_n)} \mathrm {sgn} (i_1 i_2 \cdots i_n) a_{1, i_1} a_{2, i_2} \cdots a_{n, i_n}

得到一个数,称为 nn 阶行列式,上面的式子中的求和号 i1i2in\sum\limits_{i_1 i_2 \cdots i_n} 表示对所有的排列 (i1i2in)(i_1 i_2 \cdots i_n) 求和。

1.1. 求下列行列式:

(1) a1,1000a2,2000an,n\begin {vmatrix} a_{1, 1} & 0 & \cdots & 0 \\ 0 & a_{2, 2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n, n} \end {vmatrix} (2) a1,1a1,2a1,n0a2,2a2,n00an,n\begin {vmatrix} a_{1, 1} & a_{1, 2} & \cdots & a_{1, n} \\ 0 & a_{2, 2} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n, n} \end {vmatrix}

:(1)

a1,1000a2,2000an,n=a1,1a2,2an,n\begin {vmatrix} a_{1, 1} & 0 & \cdots & 0 \\ 0 & a_{2, 2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n, n} \end {vmatrix} = a_{1, 1} a_{2, 2} \cdots a_{n, n}

(2)

a1,1a1,2a1,n0a2,2a2,n00an,n=a1,1a2,2an,n\begin {vmatrix} a_{1, 1} & a_{1, 2} & \cdots & a_{1, n} \\ 0 & a_{2, 2} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n, n} \end {vmatrix} = a_{1, 1} a_{2, 2} \cdots a_{n, n}

2.2. 计算下列行列式:

(1) abcdebcdea00000deabceabcd\begin {vmatrix} a & b & c & d & e \\ b & c & d & e & a \\ 0 & 0 & 0 & 0 & 0 \\ d & e & a & b & c \\ e & a & b & c & d \end {vmatrix} (2) 1234520004400032000286421\begin {vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 0 & 0 & 0 & 4 \\ 4 & 0 & 0 & 0 & 3 \\ 2 & 0 & 0 & 0 & 2 \\ 8 & 6 & 4 & 2 & 1 \end {vmatrix}

:(1) 对于该行列式,在第三行取元素时永远取到 00,因此该行列式值为 00

(2) 对于该行列式,在第 242 \sim 4 行至少会取到一个 00,因此该行列式值为 00

# 行列式的性质

行列式从每一行中取一个元素,使它们各在不同列中,将这些元素相乘得到一个乘积 a1,j1a2,j2an,jna_{1, j_1} a_{2, j_2} \cdots a_{n, j_n}。这些元素 a1,j1,a2,j2,,an,jna_{1, j_1}, a_{2, j_2}, \cdots, a_{n, j_n} 既然各在不同的列中,就可以在乘积中将它们按列指标从小到大的顺序重新排列,得到同样的乘积 ai1,1ai2,2ain,na_{i_1, 1} a_{i_2, 2} \cdots a_{i_n, n}

这样的 重新排列 可以这样来实现:

将排列 (j1j2jn)(j_1 j_2 \cdots j_n) 中的各数码 j1,j2,,jnj_1, j_2, \cdots, j_n 经过 ss 次对换变成标准排列 (12n)(1 2 \cdots n),对应的各因子 a1,j1a2,j2an,jna_{1, j_1} a_{2, j_2} \cdots a_{n, j_n} 经过同样这些对换变成按顺序 ai1,1ai2,2ain,na_{i_1, 1} a_{i_2, 2} \cdots a_{i_n, n},因而各因子 a1,j1a2,j2an,jna_{1, j_1} a_{2, j_2} \cdots a_{n, j_n} 的行指标经过相应的 ss 次对换变成按顺序 i1,i2,,ini_1, i_2, \cdots, i_n 排列。

这说明排列 (j1,j2,,jn)(j_1, j_2, \cdots, j_n)i1,i2,,ini_1, i_2, \cdots, i_n 的奇偶性相同,因此 (1)τ(j1j2jn)=(1)τ(i1i2in)(-1)^{\tau (j_1 j_2 \cdots j_n)} = (-1)^{\tau (i_1 i_2 \cdots i_n)}

进而:

定义 33(转置):将 m×nm \times n 矩阵 AA 的行列互换得到矩阵 BB,称为矩阵 AA转置,记作 ATA^T

设行列式 Δ=detA\Delta = \det A,则 detAT\det A^T 称为 Δ\Delta转置,记作 ΔT\Delta^T

定理 33:行列式有如下的性质:

  1. detA=detAT\det A = \det A^T,即转置不改变行列式的值(行列式的行和列是同等地位的)。

  2. Δ\Delta 中某行(列)可拆成两个向量的和,则 Δ\Delta 可以拆成相应两个 Δ1,Δ2\Delta_1, \Delta_2 的和。

    (1) Δ(βk+γk)=Δ(βk)+Δ(γk)\Delta(\beta_k + \gamma_k) = \Delta(\beta_k) + \Delta(\gamma_k)

    (2) Δ(λαk)=λΔ(αk)\Delta (\lambda \alpha_k) = \lambda \Delta (\alpha_k)

  3. 将行列式的任意一行(列)乘以常数 λ\lambda,则行列式的值变为原来的 λ\lambda 倍。

  4. 行列式两行(列)对换,行列式的值变为原来的相反数。

  5. 若行列式某行(列)元全为 00,则行列式为 00

  6. 若行列式某两行(列)相等,则行列式为 00

  7. 若行列式某两行(列)对应成比例,则行列式为 00

  8. 若行列式某一行(列)的 λ\lambda 倍加到另一行(列),行列式的值不变。

3.3. 求行列式:

Δ=1234120531101012\Delta = \begin {vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 0 & -5 \\ 3 & -1 & -1 & 0 \\ 1 & 0 & 1 & 2 \end {vmatrix}

Δ=123400390710120222=21012011100350039=21012011100350004=2×1×1×(3)×(4)=24\Delta = \begin {vmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & -3 & -9 \\ 0 & -7 & -10 & -12 \\ 0 & -2 & -2 & -2 \end {vmatrix} = 2 \begin {vmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -3 & -5 \\ 0 & 0 & -3 & -9 \end {vmatrix} = 2 \begin {vmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -3 & -5 \\ 0 & 0 & 0 & -4 \end {vmatrix} = 2 \times 1 \times 1 \times (-3) \times (-4) = 24

4.4.nn 阶行列式:

Δ=xaaaaxaaaaxaaaax\Delta = \begin {vmatrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end {vmatrix}

Δ=x+(n1)ax+(n1)ax+(n1)ax+(n1)aaxaaaaxaaaax=[x+(n1)a]1111axaaaaxaaaax=[x+(n1)a]1000axa00a0xa0a00xa=[x+(n1)a](xa)n1\Delta = \begin {vmatrix} x + (n - 1) a & x + (n - 1) a & x + (n - 1) a & \cdots & x + (n - 1) a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end {vmatrix} = [x + (n - 1) a] \begin {vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end {vmatrix} = [x + (n - 1) a] \begin {vmatrix} 1 & 0 & 0 \cdots & 0 \\ a & x - a & 0 & \cdots & 0 \\ a & 0 & x - a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & 0 & 0 & \cdots & x - a \end {vmatrix} = [x + (n - 1) a] (x - a)^{n - 1}

5.5.nn 阶行列式:

Δ=123n1n234n134512n12n2n1\Delta = \begin {vmatrix} 1 & 2 & 3 & \cdots & n - 1 & n \\ 2 & 3 & 4 & \cdots & n & 1 \\ 3 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ n & 1 & 2 & \cdots & n - 2 & n - 1 \end {vmatrix}

Δ=所有其他列加到第1列;提公因子n(n+1)2123n1n134n114512112n2n1=每一行减去上一行n(n+1)2123n1n01111n0111n101n111=化简行列式n(n+1)21111n111n11n111(n1)×(n1)=各行加到第1n(n+1)21111111n11n111(n1)×(n1)=1行加到各行n(n+1)2111100n0n000(n1)×(n1)=n(n1)2(1)1+2++(n2)(1)(n)n2=n(n+1)2(1)n(n1)2nn2\begin {aligned} \Delta & \xlongequal {所有其他列加到第 1 列;提公因子} \frac {n (n + 1)} 2 \begin {vmatrix} 1 & 2 & 3 & \cdots & n - 1 & n \\ 1 & 3 & 4 & \cdots & n & 1 \\ 1 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 2 & \cdots & n - 2 & n - 1 \end {vmatrix} \\ & \xlongequal {每一行减去上一行} \frac {n (n + 1)} 2 \begin {vmatrix} 1 & 2 & 3 & \cdots & n - 1 & n \\ 0 & 1 & 1 & \cdots & 1 & 1 - n \\ 0 & 1 & 1 & \cdots & 1 - n & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 - n & 1 & \cdots & 1 & 1 \end {vmatrix} \\ & \xlongequal {化简行列式} \frac {n (n + 1)} 2 \begin {vmatrix} 1 & 1 & \cdots & 1 & 1 - n \\ 1 & 1 & \cdots & 1 - n & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 - n & 1 & \cdots & 1 & 1 \end {vmatrix}_{(n - 1) \times (n - 1)} \\ & \xlongequal {各行加到第 1 行} \frac {n (n + 1)} 2 \begin {vmatrix} -1 & -1 & \cdots & -1 & -1 \\ 1 & 1 & \cdots & 1 - n & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 - n & 1 & \cdots & 1 & 1 \end {vmatrix}_{(n - 1) \times (n - 1)} \\ & \xlongequal {第 1 行加到各行} \frac {n (n + 1)} 2 \begin {vmatrix} -1 & -1 & \cdots & -1 & -1 \\ 0 & 0 & \cdots & -n & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -n & 0 & \cdots & 0 & 0 \end {vmatrix}_{(n - 1) \times (n - 1)} \\ & = \frac {n (n - 1)} 2 (-1)^{1 + 2 + \cdots + (n - 2)} (-1) (-n)^{n - 2} = \frac {n (n + 1)} 2 (-1)^{\frac {n (n - 1)} 2} n^{n - 2} \end {aligned}

6.6.nn 阶行列式:

V(x1,x2,,xn)=111x1x2xnx12x22xn2x1n1x2n1xnn1V(x_1, x_2, \cdots, x_n) = \begin {vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n - 1} & x_2^{n - 1} & \cdots & x_n^{n - 1} \end {vmatrix}

V(x1,x2,,xn)=各行减去上一行的x111110x2x1x3x1xnx10x2(x2x1)x3(x3x1)xn(xnx1)0x2n2(x2x1)x3n2(x3x1)xnn2(xnx1)=x2x1x3x1xnx1x2(x2x1)x3(x3x1)xn(xnx1)x2n2(x2x1)x3n2(x3x1)xnn2(xnx1)(n1)×(n1)=(x2x1)(x3x1)(xnx1)111x2x3xnx22x32xn2x2n2x3n2xnn2(n1)×(n1)=(x2x1)(x3x1)(xnx1)V(x2,x3,,xn)\begin {aligned} V(x_1, x_2, \cdots, x_n) & \xlongequal {各行减去上一行的 x_1 倍} \begin {vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ 0 & x_2 (x_2 - x_1) & x_3 (x_3 - x_1) & \cdots & x_n (x_n - x_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x_2^{n - 2} (x_2 - x_1) & x_3^{n - 2} (x_3 - x_1) & \cdots & x_n^{n - 2} (x_n - x_1) \end {vmatrix} \\ & = \begin {vmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ x_2 (x_2 - x_1) & x_3 (x_3 - x_1) & \cdots & x_n (x_n - x_1) \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{n - 2} (x_2 - x_1) & x_3^{n - 2} (x_3 - x_1) & \cdots & x_n^{n - 2} (x_n - x_1) \end {vmatrix}_{(n - 1) \times (n - 1)} \\ & = (x_2 - x_1) (x_3 - x_1) \cdots (x_n - x_1) \begin {vmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{n - 2} & x_3^{n - 2} & \cdots & x_n^{n - 2} \end {vmatrix}_{(n - 1) \times (n - 1)} \\ & = (x_2 - x_1) (x_3 - x_1) \cdots (x_n - x_1) \cdot V(x_2, x_3, \cdots, x_n) \end {aligned}

由此得到递推关系:

V(x1,x2,,xn)=1<in(xix1)V(x2,x3,,xn)V(x_1, x_2, \cdots, x_n) = \prod_{1 < i \le n} (x_i - x_1) \cdot V(x_2, x_3, \cdots, x_n)

注意到:

V(x1,x2)=11x1x2=x2x1V(x_1, x_2) = \begin {vmatrix} 1 & 1 \\ x_1 & x_2 \end {vmatrix} = x_2 - x_1

由数学归纳法得:

V(x1,x2,,xn)=1j<in(xixj)V(x_1, x_2, \cdots, x_n) = \prod_{1 \le j < i \le n} (x_i - x_j)

# 习题

  1. 求逆序数 τ(n(n1)21)\tau (n \quad (n - 1) \quad \cdots \quad 2 \quad 1),并讨论 n(n1)21n \quad (n - 1) \quad \cdots \quad 2 \quad 1 的奇偶性。

    解:

    τ(n(n1)21)=1+2++(n1)=n(n1)2 \tau (n \quad (n - 1) \quad \cdots \quad 2 \quad 1) = 1 + 2 + \cdots + (n - 1) = \frac {n (n - 1)} 2

    n=4k+2n = 4k + 2n=4k+3n = 4k + 3 时,τ(n(n1)21)\tau (n \quad (n - 1) \quad \cdots \quad 2 \quad 1) 为奇数,该排列为奇排列;
    n=4kn = 4kn=4k+1n = 4k + 1 时,τ(n(n1)21)\tau (n \quad (n - 1) \quad \cdots \quad 2 \quad 1) 为偶数,该排列为偶排列。

  2. 计算行列式:

    (1) xyx+yyx+yxx+yxy\begin {vmatrix} x & y & x + y \\ y & x + y & x \\ x + y & x & y \end {vmatrix}

    (2) abcbcacab\begin {vmatrix} a & b & c \\ b & c & a \\ c & a & b \end {vmatrix}

    (3) a2(a+1)2(a+2)2b2(b+1)2(b+2)2c2(c+1)2(c+2)2\begin {vmatrix} a^2 & (a + 1)^2 & (a + 2)^2 \\ b^2 & (b + 1)^2 & (b + 2)^2 \\ c^2 & (c + 1)^2 & (c + 2)^2 \end {vmatrix}

    (4) 1200034000001000012000123\begin {vmatrix} 1 & 2 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 3 \end {vmatrix}

    (5) 1+a11111a11111+b11111b\begin {vmatrix} 1 + a & 1 & 1 & 1 \\ 1 & 1 - a & 1 & 1 \\ 1 & 1 & 1 + b & 1 \\ 1 & 1 & 1 & 1 - b \end {vmatrix}

    (1) 解:

    xyx+yyx+yxx+yxy=xx+yxxy+yxyyx+y+(x+y)yx+yx+yx=2x32y3 \begin {vmatrix} x & y & x + y \\ y & x + y & x \\ x + y & x & y \end {vmatrix} = x \begin {vmatrix} x + y & x \\ x & y \end {vmatrix} + y \begin {vmatrix} x & y \\ y & x + y \end {vmatrix} + (x + y) \begin {vmatrix} y & x + y \\ x + y & x \end {vmatrix} = -2 x^3 - 2 y^3

    (2) 解:

    abcbcacab=acaab+babbc+cbcca=3abca3b3c3 \begin {vmatrix} a & b & c \\ b & c & a \\ c & a & b \end {vmatrix} = a \begin {vmatrix} c & a \\ a & b \end {vmatrix} + b \begin {vmatrix} a & b \\ b & c \end {vmatrix} + c \begin {vmatrix} b & c \\ c & a \end {vmatrix} = 3abc - a^3 - b^3 - c^3

    (3) 解:

    a2(a+1)2(a+2)2b2(b+1)2(b+2)2c2(c+1)2(c+2)2=将第2,3列减去第1列,提公因数4a22a+1a+1b22b+1b+1c22c+1c+1=将第2,3行减去第1行,提公因数4(ab)(ac)a22a+1a+1a+b21a+c21=将第2列减去第3列的两倍4(ab)(ac)a21a+1a+b01a+c01=4(ab)(ac)a+b1a+c1=4(ab)(ac)(bc) \begin {aligned} & \begin {vmatrix} a^2 & (a + 1)^2 & (a + 2)^2 \\ b^2 & (b + 1)^2 & (b + 2)^2 \\ c^2 & (c + 1)^2 & (c + 2)^2 \end {vmatrix} \\ & \xlongequal {将第 2, 3 列减去第 1 列,提公因数} 4 \begin {vmatrix} a^2 & 2a + 1 & a + 1 \\ b^2 & 2b + 1 & b + 1 \\ c^2 & 2c + 1 & c + 1 \end {vmatrix} \\ & \xlongequal {将第 2, 3 行减去第 1 行,提公因数} 4 (a - b) (a - c) \begin {vmatrix} a^2 & 2a + 1 & a + 1 \\ a + b & 2 & 1 \\ a + c & 2 & 1 \end {vmatrix} \\ & \xlongequal {将第 2 列减去第 3 列的两倍} 4 (a - b) (a - c) \begin {vmatrix} a^2 & -1 & a + 1 \\ a + b & 0 & 1 \\ a + c & 0 & 1 \end {vmatrix} \\ &= 4 (a - b) (a - c) \begin {vmatrix} a + b & 1 \\ a + c & 1 \end {vmatrix} = 4 (a - b) (a - c) (b - c) \end {aligned}

    (4) 解:

    1200034000001000012000123=12000034000001000012000123=(12)×4×1×2×3=12 \begin {vmatrix} 1 & 2 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 3 \end {vmatrix} = \begin {vmatrix} - \frac 1 2 & 0 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 3 \end {vmatrix} = (- \frac 1 2) \times 4 \times 1 \times 2 \times 3 = -12

    (5) 解:

    1+a11111a11111+b11111b=2行减去第1,3行减去第4,提公因数ab1+a111110000111111b=1,4行同时减去第2,3行之和aba00011000011000b=4列减去第3aba00011000010000b=a2b2 \begin {aligned} & \begin {vmatrix} 1 + a & 1 & 1 & 1 \\ 1 & 1 - a & 1 & 1 \\ 1 & 1 & 1 + b & 1 \\ 1 & 1 & 1 & 1 - b \end {vmatrix} \\ & \xlongequal {第 2 行减去第 1 行, 第 3 行减去第 4 行, 提公因数} -ab \begin {vmatrix} 1 + a & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 - b \end {vmatrix} \\ & \xlongequal {第 1, 4 行同时减去第 2, 3 行之和} -ab \begin {vmatrix} a & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -b \end {vmatrix} \\ & \xlongequal {第 4 列减去第 3 列} -ab \begin {vmatrix} a & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -b \end {vmatrix} = a^2 b^2 \end {aligned}

  3. 计算 nn 阶行列式:

    (1) a01111a100100an\begin {vmatrix} a_0 & 1 & 1 & \cdots & 1 \\ 1 & a_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & a_n \end {vmatrix}

    (2) xa1a2an2an1a1xa2an2an1a1a2xan2an1a1a2a3an1x\begin {vmatrix} x & a_1 & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ a_1 & x & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ a_1 & a_2 & x & \cdots & a_{n - 2} & a_{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_{n - 1} & x \end {vmatrix}

    (3) x+a1a2a3ana1x+a2a3ana1a2x+a3ana1a2a3x+an\begin {vmatrix} x + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & x + a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & x + a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & x + a_n \end {vmatrix}

    (4) λ1+a1b1a1b2a1bn1a1bna2b1λ2+a2b2a2bn1a2bnan1b1an1b2λn1+an1bn1an1bnanb1anb2anbn1λn+anbn\begin {vmatrix} \lambda_1 + a_1 b_1 & a_1 b_2 & \cdots & a_1 b_{n - 1} & a_1 b_n \\ a_2 b_1 & \lambda_2 + a_2 b_2 & \cdots & a_2 b_{n - 1} & a_2 b_n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n - 1} b_1 & a_{n - 1} b_2 & \cdots & \lambda_{n - 1} + a_{n - 1} b_{n - 1} & a_{n - 1} b_n \\ a_n b_1 & a_n b_2 & \cdots & a_n b_{n - 1} & \lambda_n + a_n b_n \end {vmatrix}

    (5) λan1λan11λa21λa1\begin {vmatrix} \lambda & & & & -a_n \\ -1 & \lambda & & & -a_{n - 1} \\ & \ddots & \ddots & & \vdots \\ & & -1 & \lambda & -a_2 \\ & & & -1 & \lambda - a_1 \end {vmatrix}

    (1) 解:

    a01111a10010a20100an=提公因数i=1naia01a11a21an110010101001=1列减去其它列之和i=1naia0i=1n1ai1a11a21an010000100001=(a0i=1n1ai)i=1nai \begin {aligned} & \begin {vmatrix} a_0 & 1 & 1 & \cdots & 1 \\ 1 & a_1 & 0 & \cdots & 0 \\ 1 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & a_n \end {vmatrix} \\ & \xlongequal {提公因数} \prod_{i = 1}^n a_i \begin {vmatrix} a_0 & \frac 1 {a_1} & \frac 1 {a_2} & \cdots & \frac 1 {a_n} \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \end {vmatrix} \\ & \xlongequal {第 1 列减去其它列之和} \prod_{i = 1}^n a_i \begin {vmatrix} a_0 - \sum\limits_{i = 1}^n \frac 1 {a_i} & \frac 1 {a_1} & \frac 1 {a_2} & \cdots & \frac 1 {a_n} \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end {vmatrix} \\ & = \left( a_0 - \sum_{i = 1}^n \frac 1 {a_i} \right) \cdot \prod_{i = 1}^n a_i \end {aligned}

    (2) 解:

    xa1a2an2an1a1xa2an2an1a1a2xan2an1a1a2a3an1x=1列加上其它列之和,提公因数(x+a1+a2++an1)1a1a2an2an11xa2an2an11a2xan2an11a2a3an1x=将每一行都减去第1(x+a1+a2++an1)1a1a2an2an10xa10000a2a1xa2000a2a1a3a2an1an2xan1=(x+a1+a2++an1)xa100a2a1xa20a2a1a3a2xan1(n1)×(n1)=(x+i=1n1ai)i=1n1(xai) \begin {aligned} & \begin {vmatrix} x & a_1 & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ a_1 & x & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ a_1 & a_2 & x & \cdots & a_{n - 2} & a_{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_{n - 1} & x \end {vmatrix} \\ & \xlongequal {第 1 列加上其它列之和,提公因数} (x + a_1 + a_2 + \cdots + a_{n - 1}) \begin {vmatrix} 1 & a_1 & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ 1 & x & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ 1 & a_2 & x & \cdots & a_{n - 2} & a_{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & a_2 & a_3 & \cdots & a_{n - 1} & x \end {vmatrix} \\ & \xlongequal {将每一行都减去第 1 行} (x + a_1 + a_2 + \cdots + a_{n - 1}) \begin {vmatrix} 1 & a_1 & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ 0 & x - a_1 & 0 & \cdots & 0 & 0 \\ 0 & a_2 - a_1 & x - a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_2 - a_1 & a_3 - a_2 & \cdots & a_{n - 1} - a_{n - 2} & x - a_{n - 1} \end {vmatrix} \\ & = (x + a_1 + a_2 + \cdots + a_{n - 1}) \begin {vmatrix} x - a_1 & 0 & \cdots & 0 \\ a_2 - a_1 & x - a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_2 - a_1 & a_3 - a_2 & \cdots & x - a_{n - 1} \end {vmatrix}_{(n - 1) \times (n - 1)} \\ & = \left( x + \sum_{i = 1}^{n - 1} a_i \right) \prod_{i = 1}^{n - 1} (x - a_i) \end {aligned}

    (3) 解:

    x+a1a2a3ana1x+a2a3ana1a2x+a3ana1a2a3x+an=将每一行都减去第1x+a1a2a3anxx00x0x0x00x=第一列加上其它列之和x+i=1naia2a3an0x0000x0000x=xn1(x+i=1nai) \begin {aligned} & \begin {vmatrix} x + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & x + a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & x + a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & x + a_n \end {vmatrix} \\ & \xlongequal {将每一行都减去第 1 行} \begin {vmatrix} x + a_1 & a_2 & a_3 & \cdots & a_n \\ -x & x & 0 & \cdots & 0 \\ -x & 0 & x & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -x & 0 & 0 & \cdots & x \end {vmatrix} \\ & \xlongequal {第一列加上其它列之和} \begin {vmatrix} x + \sum\limits_{i = 1}^n a_i & a_2 & a_3 & \cdots & a_n \\ 0 & x & 0 & \cdots & 0 \\ 0 & 0 & x & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & x \end {vmatrix} \\ & = x^{n - 1} \left( x + \sum_{i = 1}^n a_i \right) \end {aligned}

    (4) 解:

    λ1+a1b1a1b2a1bn1a1bna2b1λ2+a2b2a2bn1a2bnan1b1an1b2λn1+an1bn1an1bnanb1anb2anbn1λn+anbn=1b1b2bn1bn0λ1+a1b1a1b2a1bn1a1bn0a2b1λ2+a2b2a2bn1a2bn0an1b1an1b2λn1+an1bn1an1bn0anb1anb2anbn1λn+anbn(n+1)×(n+1)=i+1行减去第1行的i1b1b2bn1bna1λ1000a20λ200an100λn10an000λn(n+1)×(n+1)=1列加上第i+1列的aiλi1+i=1naibiλib1b2bn1bn0λ100000λ200000λn100000λn(n+1)×(n+1)=(1+i=1naibiλi)i=1nλi \begin {aligned} & \begin {vmatrix} \lambda_1 + a_1 b_1 & a_1 b_2 & \cdots & a_1 b_{n - 1} & a_1 b_n \\ a_2 b_1 & \lambda_2 + a_2 b_2 & \cdots & a_2 b_{n - 1} & a_2 b_n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n - 1} b_1 & a_{n - 1} b_2 & \cdots & \lambda_{n - 1} + a_{n - 1} b_{n - 1} & a_{n - 1} b_n \\ a_n b_1 & a_n b_2 & \cdots & a_n b_{n - 1} & \lambda_n + a_n b_n \end {vmatrix} \\ & = \begin {vmatrix} 1 & b_1 & b_2 & \cdots & b_{n - 1} & b_n \\ 0 & \lambda_1 + a_1 b_1 & a_1 b_2 & \cdots & a_1 b_{n - 1} & a_1 b_n \\ 0 & a_2 b_1 & \lambda_2 + a_2 b_2 & \cdots & a_2 b_{n - 1} & a_2 b_n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{n - 1} b_1 & a_{n - 1} b_2 & \cdots & \lambda_{n - 1} + a_{n - 1} b_{n - 1} & a_{n - 1} b_n \\ 0 & a_n b_1 & a_n b_2 & \cdots & a_n b_{n - 1} & \lambda_n + a_n b_n \end {vmatrix}_{(n + 1) \times (n + 1)} \\ & \xlongequal {第 i + 1 行减去第 1 行的 i 倍} \begin {vmatrix} 1 & b_1 & b_2 & \cdots & b_{n - 1} & b_n \\ -a_1 & \lambda_1 & 0 & \cdots & 0 & 0 \\ -a_2 & 0 & \lambda_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -a_{n - 1} & 0 & 0 & \cdots & \lambda_{n - 1} & 0 \\ -a_n & 0 & 0 & \cdots & 0 & \lambda_n \end {vmatrix}_{(n + 1) \times (n + 1)} \\ & \xlongequal {第 1 列加上第 i + 1 列的 \frac {a_i} {\lambda_i} 倍} \begin {vmatrix} 1 + \sum\limits_{i = 1}^n \frac {a_i b_i} {\lambda_i} & b_1 & b_2 & \cdots & b_{n - 1} & b_n \\ 0 & \lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \lambda_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{n - 1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \lambda_n \end {vmatrix}_{(n + 1) \times (n + 1)} \\ & = \left( 1 + \sum_{i = 1}^n \frac {a_i b_i} {\lambda_i} \right) \prod_{i = 1}^n \lambda_i \end {aligned}

    (5) 解:

    λan1λan11λa21λa1=从上到下依次将上一行的1λ倍加至下一行λan0λan1anλ0λa21λa31λn2an0λa11λa21λn1an=λn1(λa11λa21λn1an)=λnλn1a1an \begin {aligned} & \begin {vmatrix} \lambda & & & & -a_n \\ -1 & \lambda & & & -a_{n - 1} \\ & \ddots & \ddots & & \vdots \\ & & -1 & \lambda & -a_2 \\ & & & -1 & \lambda - a_1 \end {vmatrix} \\ & \xlongequal {从上到下依次将上一行的 \frac 1 \lambda 倍加至下一行} \begin {vmatrix} \lambda & & & & -a_n \\ 0 & \lambda & & & -a_{n - 1} - \frac {a_n} {\lambda} \\ & \ddots & \ddots & & \vdots \\ & & 0 & \lambda & -a_2 - \frac 1 \lambda a_3 - \cdots - \frac 1 {\lambda^{n - 2}} a_n \\ & & & 0 & \lambda - a_1 - \frac 1 \lambda a_2 - \cdots - \frac 1 {\lambda_{n - 1}} a_n \end {vmatrix} \\ & = \lambda^{n - 1} \left( \lambda - a_1 - \frac 1 \lambda a_2 - \cdots - \frac 1 {\lambda_{n - 1}} a_n \right) \\ & = \lambda^n - \lambda^{n - 1} a_1 - \cdots - a_n \end {aligned}

  4. 行列式 λ1241λ3914λ16\begin {vmatrix} \lambda - 1 & 2 & -4 \\ -1 & \lambda - 3 & -9 \\ -1 & 4 & \lambda - 16 \end {vmatrix} 是一个关于 λ\lambda 的多项式,求出其 33 次项、22 次项和常数项。

    解:

    λ1241λ3914λ16=(λ1)[(λ3)(λ16)+36]+2(9+λ16)4(4+λ3) \begin {vmatrix} \lambda - 1 & 2 & -4 \\ -1 & \lambda - 3 & -9 \\ -1 & 4 & \lambda - 16 \end {vmatrix} = (\lambda - 1) [(\lambda - 3) (\lambda - 16) + 36] + 2 (9 + \lambda - 16) - 4 (-4 + \lambda - 3)

    33 次项为 λ3\lambda^322 次项为 20λ2-20 \lambda^2,常数项为 70-70

  5. 证明:

    b+cc+aa+bq+rr+pp+qy+zz+xx+y=2abcpqrxyz\begin {vmatrix} b + c & c + a & a + b \\ q + r & r + p & p + q \\ y + z & z + x & x + y \end {vmatrix} = 2 \begin {vmatrix} a & b & c \\ p & q & r \\ x & y & z \end {vmatrix}

    证明:

    b+cc+aa+bq+rr+pp+qy+zz+xx+y=bcaqrpyzx+cabrpqzxy=2abcpqrxyz \begin {vmatrix} b + c & c + a & a + b \\ q + r & r + p & p + q \\ y + z & z + x & x + y \end {vmatrix} = \begin {vmatrix} b & c & a \\ q & r & p \\ y & z & x \end {vmatrix} + \begin {vmatrix} c & a & b \\ r & p & q \\ z & x & y \end {vmatrix} = 2 \begin {vmatrix} a & b & c \\ p & q & r \\ x & y & z \end {vmatrix}

  6. 111111111=0\begin {vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end {vmatrix} = 0 证明奇偶排列各半。

    证明:对于任意排列 (i1i2in)(i_1 \quad i_2 \quad \cdots \quad i_n),都有 a1,i1a2,i2an,in=1a_{1, i_1} a_{2, i_2} \cdots a_{n, i_n} = 1,因此:

    Δ=(i1i2in)(1)sgn(i1i2in)=0 \Delta = \sum_{(i_1 \quad i_2 \quad \cdots \quad i_n)} (-1)^{\mathrm {sgn} (i_1 \quad i_2 \quad \cdots \quad i_n)} = 0

    即奇排列数量等于偶排列数量,各占一半。