#  前置知识 
2.6 子空间 
#  线性方程组唯一解的条件 
我们已知,线性方程组 A x = b Ax = b A x = b   有唯一解的条件是:系数矩阵 A A A   线性无关 。
定理 1 1 1  :设 α 1 , ⋯   , α n ∈ F n × 1 \alpha_1, \cdots, \alpha_n \in F^{n \times 1} α 1  , ⋯ , α n  ∈ F n × 1  ,Δ \Delta Δ   是从左向右依次以 α 1 , ⋯   , α n \alpha_1, \cdots, \alpha_n α 1  , ⋯ , α n    为列组成的行列式,则:
{ α 1 , ⋯   , α n } \{ \alpha_1, \cdots, \alpha_n \} { α 1  , ⋯ , α n  }   是 F n × 1 F^{n \times 1} F n × 1   的一组基当且仅当 Δ ≠ 0 \Delta \not = 0 Δ  = 0  。
证明 :先设 Δ ≠ 0 \Delta \not = 0 Δ  = 0  ,考虑关于 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x 1  , x 2  , ⋯ , x n    的方程组 α 1 x 1 + α 2 x 2 + ⋯ + α n x n = 0 \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = 0 α 1  x 1  + α 2  x 2  + ⋯ + α n  x n  = 0  ,若该方程组有非零解,则系数矩阵经过初等行变换后存在某一行全为 0 0 0  ,此时该矩阵的行列式值为 0 0 0  ,矛盾,因此该方程组只有零解,从而 α 1 , ⋯   , α n \alpha_1, \cdots, \alpha_n α 1  , ⋯ , α n    线性无关,为 F n × 1 F^{n \times 1} F n × 1   的基。
反过来,设 α 1 , ⋯   , α n \alpha_1, \cdots, \alpha_n α 1  , ⋯ , α n    为 F n × 1 F^{n \times 1} F n × 1   的基,则上述方程组只有零解,于是其系数矩阵经过初等行变换后最简形式为:
B = ( b 1 , 1 0 ⋯ 0 0 b 2 , 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ b n , n ) B = \begin {pmatrix}
b_{1, 1} & 0 & \cdots & 0 \\
0 & b_{2, 1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & b_{n, n}
\end {pmatrix}
 B =  b 1 , 1  0 ⋮ 0  0 b 2 , 1  ⋮ 0  ⋯ ⋯ ⋱ ⋯  0 0 ⋮ b n , n    
其中 b 1 , 1 = ⋯ = b n , n = 1 b_{1, 1} = \cdots = b_{n, n} = 1 b 1 , 1  = ⋯ = b n , n  = 1  ,于是 ∣ B ∣ = b 1 , 1 ⋯ b n , n = 1 |B| = b_{1, 1} \cdots b_{n, n} = 1 ∣ B ∣ = b 1 , 1  ⋯ b n , n  = 1  。又因为 ∣ A ∣ = λ ∣ B ∣ ≠ 0 |A| = \lambda |B| \not = 0 ∣ A ∣ = λ ∣ B ∣  = 0  ,因此原系数矩阵行列式值不为 0 0 0  。
推论 1 1 1  :设 A A A   是 n n n   阶方阵,则如下命题等价:
∣ A ∣ ≠ 0 |A| \not = 0 ∣ A ∣  = 0  ;
 
A A A   的列向量线性无关;
 
A A A   的行向量线性无关;
 
r a n k   A = n \mathrm {rank} \, A = n rank A = n  。
 
 
推论 2 2 2  :设 A A A   是由 n n n   个方程组成的 n n n   元一次方程组 A x = b Ax = b A x = b   的系数矩阵。则:
det  A ≠ 0 ⇔ 方程组 A x = b 有唯一解 \det A \not = 0 \Leftrightarrow 方程组 Ax = b 有唯一解
 det A  = 0 ⇔ 方程组 A x = b 有唯一解 
例 1. 1. 1.   λ \lambda λ   取什么值时,方程组有非零解。
{ x 2 + x 3 = λ x 1 x 1 + x 3 = λ x 2 x 1 + x 2 = λ x 3 \begin {cases}
x_2 + x_3 = \lambda x_1 \\
x_1 + x_3 = \lambda x_2 \\
x_1 + x_2 = \lambda x_3
\end {cases}
 ⎩ ⎨ ⎧  x 2  + x 3  = λ x 1  x 1  + x 3  = λ x 2  x 1  + x 2  = λ x 3   
 
解 :移项,整理得:
{ λ x 1 − x 2 − x 3 = 0 − x 1 + λ x 2 − x 3 = 0 − x 1 − x 2 + λ x 3 = 0 \begin {cases}
\lambda x_1 - x_2 - x_3 = 0 \\
- x_1 + \lambda x_2 - x_3 = 0 \\
- x_1 - x_2 + \lambda x_3 = 0
\end {cases}
 ⎩ ⎨ ⎧  λ x 1  − x 2  − x 3  = 0 − x 1  + λ x 2  − x 3  = 0 − x 1  − x 2  + λ x 3  = 0  
上述方程有非零解,则系数行列式为 0 0 0  。而
Δ = ∣ λ − 1 − 1 − 1 λ − 1 − 1 − 1 λ ∣ = ( 2 ) + ( 1 ) , ( 3 ) + ( 1 ) ∣ λ − 2 λ − 2 λ − 2 − 1 λ − 1 − 1 − 1 λ ∣ = ( λ − 2 ) ∣ 1 1 1 − 1 λ − 1 − 1 − 1 λ ∣ = ( 1 ) + ( 2 ) , ( 1 ) + ( 3 ) ( λ − 2 ) ∣ 1 1 1 0 λ + 1 0 0 0 λ + 1 ∣ = ( λ − 2 ) ( λ + 1 ) 2 \Delta = \begin {vmatrix}
\lambda & -1 & -1 \\
-1 & \lambda & -1 \\
-1 & -1 & \lambda
\end {vmatrix} \xlongequal {(2) + (1), (3) + (1)} \begin {vmatrix}
\lambda - 2 & \lambda - 2 & \lambda - 2 \\
-1 & \lambda & -1 \\
-1 & -1 & \lambda
\end {vmatrix} = (\lambda - 2) \begin {vmatrix}
1 & 1 & 1 \\
-1 & \lambda & -1 \\
-1 & -1 & \lambda
\end {vmatrix} \xlongequal {(1) + (2), (1) + (3)} (\lambda - 2) \begin {vmatrix}
1 & 1 & 1 \\
0 & \lambda + 1 & 0 \\
0 & 0 & \lambda + 1
\end {vmatrix} = (\lambda - 2) (\lambda + 1)^2
 Δ =  λ − 1 − 1  − 1 λ − 1  − 1 − 1 λ   ( 2 ) + ( 1 ) , ( 3 ) + ( 1 )  λ − 2 − 1 − 1  λ − 2 λ − 1  λ − 2 − 1 λ   = ( λ − 2 )  1 − 1 − 1  1 λ − 1  1 − 1 λ   ( 1 ) + ( 2 ) , ( 1 ) + ( 3 ) ( λ − 2 )  1 0 0  1 λ + 1 0  1 0 λ + 1   = ( λ − 2 ) ( λ + 1 ) 2 
由此解得 λ = 2 \lambda = 2 λ = 2   或 λ = − 1 \lambda = -1 λ = − 1  。
例 2. 2. 2.   设 a , b , c a, b, c a , b , c   不全为 0 0 0  ,α , β , γ \alpha, \beta, \gamma α , β , γ   为任意实数,且
{ a = b cos  γ + c cos  β b = c cos  α + a cos  γ c = a cos  β + b cos  α \begin {cases}
a = b \cos \gamma + c \cos \beta \\
b = c \cos \alpha + a \cos \gamma \\
c = a \cos \beta + b \cos \alpha
\end {cases}
 ⎩ ⎨ ⎧  a = b cos γ + c cos β b = c cos α + a cos γ c = a cos β + b cos α  
求证:
cos  2 α + cos  2 β + cos  2 γ + 2 cos  α cos  β cos  γ = 1 \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma = 1
 cos 2 α + cos 2 β + cos 2 γ + 2 cos α cos β cos γ = 1 
 
证明 :将 a , b , c a, b, c a , b , c   看成未知数,上述等式看成方程:
{ − a + b cos  γ + c cos  β = 0 a cos  γ − b + c cos  α = 0 a cos  β + b cos  α − c = 0 \begin {cases}
-a + b \cos \gamma + c \cos \beta = 0 \\
a \cos \gamma - b + c \cos \alpha = 0 \\
a \cos \beta + b \cos \alpha - c = 0
\end {cases}
 ⎩ ⎨ ⎧  − a + b cos γ + c cos β = 0 a cos γ − b + c cos α = 0 a cos β + b cos α − c = 0  
有非零解,系数行列式等于 0 0 0  ,即
∣ − 1 cos  γ cos  β cos  γ − 1 cos  α cos  β cos  α − 1 ∣ = 0 \begin {vmatrix}
-1 & \cos \gamma & \cos \beta \\
\cos \gamma & -1 & \cos \alpha \\
\cos \beta & \cos \alpha & -1
\end {vmatrix} = 0
  − 1 cos γ cos β  cos γ − 1 cos α  cos β cos α − 1   = 0 
从而有 cos  2 α + cos  2 β + cos  2 γ + 2 cos  α cos  β cos  γ = 1 \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma = 1 cos 2 α + cos 2 β + cos 2 γ + 2 cos α cos β cos γ = 1   成立。
#  矩阵的行列式秩 
若方阵 A A A   的行列式 ∣ A ∣ ≠ 0 |A| \not = 0 ∣ A ∣  = 0  ,就称 A A A   是 非退化的 ,否则称 A A A   是 退化的 。非退化方阵 A A A   的各行(列)线性无关,r a n k   A = n \mathrm {rank} \, A = n rank A = n  ,这样的方阵也称为是 满秩的 。
定义 1 1 1  (子式与行列式秩) :一般地,对任意矩阵 A A A  ,以及正整数 i 1 < ⋯ < i s , j 1 < ⋯ < j s i_1 < \cdots < i_s, j_1 < \cdots < j_s i 1  < ⋯ < i s  , j 1  < ⋯ < j s   ,我们将 A A A   的第 i 1 , ⋯   , i s i_1, \cdots, i_s i 1  , ⋯ , i s    行和第 j 1 , ⋯   , j s j_1, \cdots, j_s j 1  , ⋯ , j s    列交叉位置的元组成的行列式称为 A A A   的一个 s s s   阶子式(minor),记作:Δ s \Delta_s Δ s   。
设 r r r   是正整数,m × n m \times n m × n   矩阵 A A A   含有 r r r   阶非零子式,不含更大阶非零子式,即 A A A   中非零子式的最大阶是 r r r  ,则 r r r   称为 A A A   的 行列式秩 。
 
定理 2 2 2  :矩阵 A A A   的行列式秩 = = =   矩阵 A A A   的秩。
证明 :若 A A A   中含有的不为零的最大阶子式为 k k k   阶子式 Δ k \Delta_k Δ k   ,先证明 A A A   的列秩大于或等于 k k k  ,为此,我们证明 A A A   的第 j 1 , j 2 , ⋯   , j k j_1, j_2, \cdots, j_k j 1  , j 2  , ⋯ , j k    列组成列向量组的极大线性无关组。因此,k ≤ r a n k   A k \le \mathrm {rank} \, A k ≤ rank A  。
反之,若 r a n k   A = s \mathrm {rank} \, A = s rank A = s  ,则 A A A   有某 s s s   列如第 j 1 , j 2 , ⋯   , j s j_1, j_2, \cdots, j_s j 1  , j 2  , ⋯ , j s    列线性无关,把这 s s s   列组成矩阵 A s A_s A s   ,则它的列秩与行秩都为 s s s  ,于是 A s A_s A s    中有 s s s   行,如 i 1 , i 2 , ⋯   , i s i_1, i_2, \cdots, i_s i 1  , i 2  , ⋯ , i s    行线性无关,这 s s s   行排成的 s s s   阶方阵 B s B_s B s    有 ∣ B s ∣ ≠ 0 |B_s| \not = 0 ∣ B s  ∣  = 0  ,而 ∣ B s ∣ |B_s| ∣ B s  ∣   为 A A A   的 s s s   阶非零子式,所以 r a n k   A = s ≤ k \mathrm {rank} \, A = s \le k rank A = s ≤ k  。于是我们有:r a n k   A = k \mathrm {rank} \, A = k rank A = k  。
#  Cramer 法则 
设 n n n   元线性方程组 A x = b Ax = b A x = b   有唯一解,有没有办法求出方程组的通解公式呢?
我们不妨记:
Δ = ∣ a 1 , 1 a 1 , 2 ⋯ a 1 , n a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ a n , 1 a n , 2 ⋯ a n , n ∣ \Delta = \begin {vmatrix}
a_{1, 1} & a_{1, 2} & \cdots & a_{1, n} \\
a_{2, 1} & a_{2, 2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end {vmatrix}
 Δ =  a 1 , 1  a 2 , 1  ⋮ a n , 1   a 1 , 2  a 2 , 2  ⋮ a n , 2   ⋯ ⋯ ⋱ ⋯  a 1 , n  a 2 , n  ⋮ a n , n    
考虑利用初等列变换替换系数矩阵的第 j j j   列,得到:
∣ a 1 , 1 ⋯ a 1 , j − 1 ∑ k = 1 n a 1 , k x k a 1 , j + 1 ⋯ a 1 , n a 2 , 1 ⋯ a 2 , j − 1 ∑ k = 1 n a 2 , k x k a 2 , j + 1 ⋯ a 2 , n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j − 1 ∑ k = 1 n a n , k x k a n , j + 1 ⋯ a n , n ∣ = ∣ a 1 , 1 ⋯ a 1 , j − 1 b 1 a 1 , j + 1 ⋯ a 1 , n a 2 , 1 ⋯ a 2 , j − 1 b 2 a 2 , j + 1 ⋯ a 2 , n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j − 1 b n a n , j + 1 ⋯ a n , n ∣ \begin {vmatrix}
a_{1, 1} & \cdots & a_{1, j - 1} & \sum\limits_{k = 1}^n a_{1, k} x_k & a_{1, j + 1} & \cdots & a_{1, n} \\
a_{2, 1} & \cdots & a_{2, j - 1} & \sum\limits_{k = 1}^n a_{2, k} x_k & a_{2, j + 1} & \cdots & a_{2, n} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j - 1} & \sum\limits_{k = 1}^n a_{n, k} x_k & a_{n, j + 1} & \cdots & a_{n, n}
\end {vmatrix} = \begin {vmatrix}
a_{1, 1} & \cdots & a_{1, j - 1} & b_1 & a_{1, j + 1} & \cdots & a_{1, n} \\
a_{2, 1} & \cdots & a_{2, j - 1} & b_2 & a_{2, j + 1} & \cdots & a_{2, n} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j - 1} & b_n & a_{n, j + 1} & \cdots & a_{n, n}
\end {vmatrix}
  a 1 , 1  a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  a 1 , j − 1  a 2 , j − 1  ⋮ a n , j − 1   k = 1 ∑ n  a 1 , k  x k  k = 1 ∑ n  a 2 , k  x k  ⋮ k = 1 ∑ n  a n , k  x k   a 1 , j + 1  a 2 , j + 1  ⋮ a n , j + 1   ⋯ ⋯ ⋱ ⋯  a 1 , n  a 2 , n  ⋮ a n , n    =  a 1 , 1  a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  a 1 , j − 1  a 2 , j − 1  ⋮ a n , j − 1   b 1  b 2  ⋮ b n   a 1 , j + 1  a 2 , j + 1  ⋮ a n , j + 1   ⋯ ⋯ ⋱ ⋯  a 1 , n  a 2 , n  ⋮ a n , n    
将等式右边的行列式记为 Δ j \Delta_j Δ j   ,左边的行列式可以拆成 n n n   个行列式之和:
∑ k = 1 n ∣ a 1 , 1 ⋯ a 1 , j − 1 a 1 , k a 1 , j + 1 ⋯ a 1 , n a 2 , 1 ⋯ a 2 , j − 1 a 2 , k a 2 , j + 1 ⋯ a 2 , n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j − 1 a n , k a n , j + 1 ⋯ a n , n ∣ x k \sum_{k = 1}^n \begin {vmatrix}
a_{1, 1} & \cdots & a_{1, j - 1} & a_{1, k} & a_{1, j + 1} & \cdots & a_{1, n} \\
a_{2, 1} & \cdots & a_{2, j - 1} & a_{2, k} & a_{2, j + 1} & \cdots & a_{2, n} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, k} & a_{n, j + 1} & \cdots & a_{n, n}
\end {vmatrix} x_k
 k = 1 ∑ n   a 1 , 1  a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  a 1 , j − 1  a 2 , j − 1  ⋮ a n , j − 1   a 1 , k  a 2 , k  ⋮ a n , k   a 1 , j + 1  a 2 , j + 1  ⋮ a n , j + 1   ⋯ ⋯ ⋱ ⋯  a 1 , n  a 2 , n  ⋮ a n , n    x k  
当 j ≠ k j \not = k j  = k   时,行列式存在完全相同的两列,值为 0 0 0  。当 j = k j = k j = k   时行列式就是 Δ \Delta Δ  ,因此有:
Δ ⋅ x j = Δ j \Delta \cdot x_j = \Delta_j
 Δ ⋅ x j  = Δ j  
从而解得:
x j = Δ j Δ , ∀   1 ≤ j ≤ n x_j = \frac {\Delta_j} {\Delta}, \forall \, 1 \le j \le n
 x j  = Δ Δ j   , ∀ 1 ≤ j ≤ n 
也即:原方程组如果有解,只有唯一一组解:
( x 1 , ⋯   , x j , ⋯   , x n ) = ( Δ 1 Δ , ⋯   , Δ j Δ , ⋯   , Δ n Δ ) (x_1, \cdots, x_j, \cdots, x_n) = \left( \frac {\Delta_1} \Delta, \cdots, \frac {\Delta_j} \Delta, \cdots, \frac {\Delta_n} \Delta \right)
 ( x 1  , ⋯ , x j  , ⋯ , x n  ) = ( Δ Δ 1   , ⋯ , Δ Δ j   , ⋯ , Δ Δ n   ) 
如果常数项 b i b_i b i    全部为零,所有的 Δ i = 0 \Delta_i = 0 Δ i  = 0  ,原方程组确实只有唯一零解,这表明原方程组的系数矩阵的 n n n   列线性无关,组成 n n n   维列向量空间 F n × 1 F^{n \times 1} F n × 1   的一组基,F n × 1 F^{n \times 1} F n × 1   中的每个列向量 ( b 1 , ⋯   , b n ) T (b_1, \cdots, b_n)^T ( b 1  , ⋯ , b n  ) T   都能唯一地表示成这组基的线性组合,也即原方程组对任意常数项 b 1 , ⋯   , b n b_1, \cdots, b_n b 1  , ⋯ , b n    都有唯一解,即上述表达式,这就是 Cramer 法则。
定理 3 3 3  (克莱姆法则) :如果 n n n   元线性方程组的系数行列式 Δ ≠ 0 \Delta \not = 0 Δ  = 0  ,则方程组有唯一解:
( x 1 , ⋯   , x j , ⋯   , x n ) = ( Δ 1 Δ , ⋯   , Δ j Δ , ⋯   , Δ n Δ ) (x_1, \cdots, x_j, \cdots, x_n) = \left( \frac {\Delta_1} \Delta, \cdots, \frac {\Delta_j} \Delta, \cdots, \frac {\Delta_n} \Delta \right)
 ( x 1  , ⋯ , x j  , ⋯ , x n  ) = ( Δ Δ 1   , ⋯ , Δ Δ j   , ⋯ , Δ Δ n   ) 
其中 Δ j \Delta_j Δ j    是将 Δ \Delta Δ   的第 j j j   列各元分别换成 b 1 , ⋯   , b n b_1, \cdots, b_n b 1  , ⋯ , b n    得到的行列式。
#  习题 
用克莱姆法则解线性方程组:
{ 2 x 1 + x 2 − 5 x 3 + x 4 = 0 x 1 − 3 x 2 − 6 x 4 = 3 2 x 2 − x 3 + 2 x 4 = − 5 x 1 + 4 x 2 − 7 x 3 + 6 x 4 = 0 \begin {cases}
2x_1 + x_2 - 5x_3 + x_4 = 0 \\
x_1 - 3x_2 - 6x_4 = 3 \\
2x_2 - x_3 + 2x_4 = -5 \\
x_1 + 4x_2 - 7x_3 + 6x_4 = 0
\end {cases}
 ⎩ ⎨ ⎧  2 x 1  + x 2  − 5 x 3  + x 4  = 0 x 1  − 3 x 2  − 6 x 4  = 3 2 x 2  − x 3  + 2 x 4  = − 5 x 1  + 4 x 2  − 7 x 3  + 6 x 4  = 0  
解:
Δ = ∣ 2 1 − 5 1 1 − 3 0 − 6 0 2 − 1 2 1 4 − 7 6 ∣ = 27 Δ 1 = ∣ 0 1 − 5 1 3 − 3 0 − 6 − 5 2 − 1 2 0 4 − 7 6 ∣ = − 99 , x 1 = Δ 1 Δ = − 11 3 Δ 2 = ∣ 2 0 − 5 1 1 3 0 − 6 0 − 5 − 1 2 1 0 − 7 6 ∣ = − 134 , x 2 = Δ 2 Δ = − 134 27 Δ 3 = ∣ 2 1 0 1 1 − 3 3 − 6 0 2 − 5 2 1 4 0 6 ∣ = − 59 , x 3 = Δ 3 Δ = − 59 27 Δ 4 = ∣ 2 1 − 5 0 1 − 3 0 3 0 2 − 1 − 5 1 4 − 7 0 ∣ = − 37 , x 4 = Δ 4 Δ = − 37 27     \Delta = \begin {vmatrix}
    2 & 1 & -5 & 1 \\
    1 & -3 & 0 & -6 \\
    0 & 2 & -1 & 2 \\
    1 & 4 & -7 & 6
    \end {vmatrix} = 27 \\
    \Delta_1 = \begin {vmatrix}
    0 & 1 & -5 & 1 \\
    3 & -3 & 0 & -6 \\
    -5 & 2 & -1 & 2 \\
    0 & 4 & -7 & 6
    \end {vmatrix} = -99, x_1 = \frac {\Delta_1} {\Delta} = - \frac {11} 3 \\
    \Delta_2 = \begin {vmatrix}
    2 & 0 & -5 & 1 \\
    1 & 3 & 0 & -6 \\
    0 & -5 & -1 & 2 \\
    1 & 0 & -7 & 6
    \end {vmatrix} = -134, x_2 = \frac {\Delta_2} {\Delta} = - \frac {134} {27} \\
    \Delta_3 = \begin {vmatrix}
    2 & 1 & 0 & 1 \\
    1 & -3 & 3 & -6 \\
    0 & 2 & -5 & 2 \\
    1 & 4 & 0 & 6
    \end {vmatrix} = -59, x_3 = \frac {\Delta_3} {\Delta} = - \frac {59} {27} \\
    \Delta_4 = \begin {vmatrix}
    2 & 1 & -5 & 0 \\
    1 & -3 & 0 & 3 \\
    0 & 2 & -1 & -5 \\
    1 & 4 & -7 & 0
    \end {vmatrix} = -37, x_4 = \frac {\Delta_4} {\Delta} = - \frac {37} {27} \\
 Δ =  2 1 0 1  1 − 3 2 4  − 5 0 − 1 − 7  1 − 6 2 6   = 27 Δ 1  =  0 3 − 5 0  1 − 3 2 4  − 5 0 − 1 − 7  1 − 6 2 6   = − 99 , x 1  = Δ Δ 1   = − 3 11  Δ 2  =  2 1 0 1  0 3 − 5 0  − 5 0 − 1 − 7  1 − 6 2 6   = − 134 , x 2  = Δ Δ 2   = − 27 134  Δ 3  =  2 1 0 1  1 − 3 2 4  0 3 − 5 0  1 − 6 2 6   = − 59 , x 3  = Δ Δ 3   = − 27 59  Δ 4  =  2 1 0 1  1 − 3 2 4  − 5 0 − 1 − 7  0 3 − 5 0   = − 37 , x 4  = Δ Δ 4   = − 27 37  
 
 
设 a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots, a_n a 1  , a 2  , ⋯ , a n    是数域 F \mathbb F F   中互不相同的数,b 1 , b 2 , ⋯   , b n b_1, b_2, \cdots, b_n b 1  , b 2  , ⋯ , b n    是数域 F \mathbb F F   中任意一组给定的数,用克莱姆法则证明:存在唯一的数域 F \mathbb F F   上的多项式 f ( x ) = c 0 x n − 1 + c 1 x n − 2 + ⋯ + c n − 1 f(x) = c_0 x^{n - 1} + c_1 x^{n - 2} + \cdots + c_{n - 1} f ( x ) = c 0  x n − 1 + c 1  x n − 2 + ⋯ + c n − 1    使 f ( a i ) = b i f(a_i) = b_i f ( a i  ) = b i   。
证明:依次将 a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots, a_n a 1  , a 2  , ⋯ , a n    代入多项式,可得下列线性方程组:
{ a 1 n − 1 c 0 + a 1 n − 2 c 1 + ⋯ + c n − 1 = b 1 a 2 n − 1 c 0 + a 2 n − 2 c 1 + ⋯ + c n − 1 = b 2 ⋯   ⋯ a n n − 1 c 0 + a n n − 2 c 1 + ⋯ + c n − 1 = b n     \begin {cases}
    a_1^{n - 1} c_0 + a_1^{n - 2} c_1 + \cdots + c_{n - 1} = b_1 \\
    a_2^{n - 1} c_0 + a_2^{n - 2} c_1 + \cdots + c_{n - 1} = b_2 \\
    \cdots \, \cdots \\
    a_n^{n - 1} c_0 + a_n^{n - 2} c_1 + \cdots + c_{n - 1} = b_n \\
    \end {cases}
 ⎩ ⎨ ⎧  a 1 n − 1  c 0  + a 1 n − 2  c 1  + ⋯ + c n − 1  = b 1  a 2 n − 1  c 0  + a 2 n − 2  c 1  + ⋯ + c n − 1  = b 2  ⋯ ⋯ a n n − 1  c 0  + a n n − 2  c 1  + ⋯ + c n − 1  = b n   
由于 a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots, a_n a 1  , a 2  , ⋯ , a n    互不相同,因此系数矩阵行列式:
∣ a 1 n − 1 a 1 n − 2 ⋯ 1 a 2 n − 1 a 2 n − 2 ⋯ 1 ⋮ ⋮ ⋱ ⋮ a n n − 1 a n n − 2 ⋯ 1 ∣     \begin {vmatrix}
    a_1^{n - 1} & a_1^{n - 2} & \cdots & 1 \\
    a_2^{n - 1} & a_2^{n - 2} & \cdots & 1 \\
    \vdots & \vdots & \ddots & \vdots \\
    a_n^{n - 1} & a_n^{n - 2} & \cdots & 1 \\
    \end {vmatrix}
  a 1 n − 1  a 2 n − 1  ⋮ a n n − 1   a 1 n − 2  a 2 n − 2  ⋮ a n n − 2   ⋯ ⋯ ⋱ ⋯  1 1 ⋮ 1   
值不为 0 0 0  ,可由范德蒙德行列式求出其值。因此方程组有唯一一组解,其解为:
x i = Δ i Δ     x_i = \frac {\Delta_i} {\Delta}
 x i  = Δ Δ i   
其中 Δ \Delta Δ   为系数矩阵行列式的值,Δ i \Delta_i Δ i    为将系数矩阵的第 i i i   列从上到下依次替换为 b 1 , ⋯   , b n b_1, \cdots, b_n b 1  , ⋯ , b n    后所得矩阵的行列式的值。
 
 
设 n n n   元线性方程组:
{ a 1 , 1 x 1 + a 1 , 2 x 2 + ⋯ + a 1 , n x n = b 1 a 2 , 1 x 1 + a 2 , 2 x 2 + ⋯ + a 2 , n x n = b 2 ⋯   ⋯ a n , 1 x 1 + a n , 2 x 2 + ⋯ + a n , n x n = b n \begin {cases}
a_{1, 1} x_1 + a_{1, 2} x_2 + \cdots + a_{1, n} x_n = b_1 \\
a_{2, 1} x_1 + a_{2, 2} x_2 + \cdots + a_{2, n} x_n = b_2 \\
\cdots \, \cdots \\
a_{n, 1} x_1 + a_{n, 2} x_2 + \cdots + a_{n, n} x_n = b_n \\
\end {cases}
 ⎩ ⎨ ⎧  a 1 , 1  x 1  + a 1 , 2  x 2  + ⋯ + a 1 , n  x n  = b 1  a 2 , 1  x 1  + a 2 , 2  x 2  + ⋯ + a 2 , n  x n  = b 2  ⋯ ⋯ a n , 1  x 1  + a n , 2  x 2  + ⋯ + a n , n  x n  = b n   
的系数矩阵行列式 Δ ≠ 0 \Delta \not = 0 Δ  = 0  。对每个 1 ≤ j ≤ n 1 \le j \le n 1 ≤ j ≤ n  ,令 Δ j = b 1 A 1 , j + b 2 A 2 , j + ⋯ + b n A n , j \Delta_j = b_1 A_{1, j} + b_2 A_{2, j} + \cdots + b_n A_{n, j} Δ j  = b 1  A 1 , j  + b 2  A 2 , j  + ⋯ + b n  A n , j    是在 Δ \Delta Δ   中将第 j j j   列元素分别换成 b 1 , b 2 , ⋯   , b n b_1, b_2, \cdots, b_n b 1  , b 2  , ⋯ , b n    得到的行列式。将 ( x 1 , x 2 , ⋯   , x n ) = ( Δ 1 Δ , Δ 2 Δ , ⋯   , Δ n Δ ) (x_1, x_2, \cdots, x_n) = \left( \dfrac {\Delta_1} \Delta, \dfrac {\Delta_2} \Delta, \cdots, \dfrac {\Delta_n} \Delta \right) ( x 1  , x 2  , ⋯ , x n  ) = ( Δ Δ 1   , Δ Δ 2   , ⋯ , Δ Δ n   )   代入原方程组检验,证明它确实为该方程组的解。
证明:记:
Δ = ∣ a 1 , 1 a 1 , 2 ⋯ a 1 , n a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ a n , 1 a n , 2 ⋯ a n , n ∣     \Delta = \begin {vmatrix}
    a_{1, 1} & a_{1, 2} & \cdots & a_{1, n} \\
    a_{2, 1} & a_{2, 2} & \cdots & a_{2, n} \\
    \vdots & \vdots & \ddots & \vdots \\
    a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
    \end {vmatrix}
 Δ =  a 1 , 1  a 2 , 1  ⋮ a n , 1   a 1 , 2  a 2 , 2  ⋮ a n , 2   ⋯ ⋯ ⋱ ⋯  a 1 , n  a 2 , n  ⋮ a n , n    
考虑利用初等列变换替换系数矩阵的第 j j j   列,得到:
∣ a 1 , 1 ⋯ a 1 , j − 1 ∑ k = 1 n a 1 , k x k a 1 , j + 1 ⋯ a 1 , n a 2 , 1 ⋯ a 2 , j − 1 ∑ k = 1 n a 2 , k x k a 2 , j + 1 ⋯ a 2 , n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j − 1 ∑ k = 1 n a n , k x k a n , j + 1 ⋯ a n , n ∣ = ∣ a 1 , 1 ⋯ a 1 , j − 1 b 1 a 1 , j + 1 ⋯ a 1 , n a 2 , 1 ⋯ a 2 , j − 1 b 2 a 2 , j + 1 ⋯ a 2 , n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j − 1 b n a n , j + 1 ⋯ a n , n ∣     \begin {vmatrix}
    a_{1, 1} & \cdots & a_{1, j - 1} & \sum\limits_{k = 1}^n a_{1, k} x_k & a_{1, j + 1} & \cdots & a_{1, n} \\
    a_{2, 1} & \cdots & a_{2, j - 1} & \sum\limits_{k = 1}^n a_{2, k} x_k & a_{2, j + 1} & \cdots & a_{2, n} \\
    \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
    a_{n, 1} & \cdots & a_{n, j - 1} & \sum\limits_{k = 1}^n a_{n, k} x_k & a_{n, j + 1} & \cdots & a_{n, n}
    \end {vmatrix} = \begin {vmatrix}
    a_{1, 1} & \cdots & a_{1, j - 1} & b_1 & a_{1, j + 1} & \cdots & a_{1, n} \\
    a_{2, 1} & \cdots & a_{2, j - 1} & b_2 & a_{2, j + 1} & \cdots & a_{2, n} \\
    \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
    a_{n, 1} & \cdots & a_{n, j - 1} & b_n & a_{n, j + 1} & \cdots & a_{n, n}
    \end {vmatrix}
  a 1 , 1  a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  a 1 , j − 1  a 2 , j − 1  ⋮ a n , j − 1   k = 1 ∑ n  a 1 , k  x k  k = 1 ∑ n  a 2 , k  x k  ⋮ k = 1 ∑ n  a n , k  x k   a 1 , j + 1  a 2 , j + 1  ⋮ a n , j + 1   ⋯ ⋯ ⋱ ⋯  a 1 , n  a 2 , n  ⋮ a n , n    =  a 1 , 1  a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  a 1 , j − 1  a 2 , j − 1  ⋮ a n , j − 1   b 1  b 2  ⋮ b n   a 1 , j + 1  a 2 , j + 1  ⋮ a n , j + 1   ⋯ ⋯ ⋱ ⋯  a 1 , n  a 2 , n  ⋮ a n , n    
将等式右边的行列式记为 Δ j \Delta_j Δ j   ,左边的行列式可以拆成 n n n   个行列式之和:
∑ k = 1 n ∣ a 1 , 1 ⋯ a 1 , j − 1 a 1 , k a 1 , j + 1 ⋯ a 1 , n a 2 , 1 ⋯ a 2 , j − 1 a 2 , k a 2 , j + 1 ⋯ a 2 , n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j − 1 a n , k a n , j + 1 ⋯ a n , n ∣ x k     \sum_{k = 1}^n \begin {vmatrix}
    a_{1, 1} & \cdots & a_{1, j - 1} & a_{1, k} & a_{1, j + 1} & \cdots & a_{1, n} \\
    a_{2, 1} & \cdots & a_{2, j - 1} & a_{2, k} & a_{2, j + 1} & \cdots & a_{2, n} \\
    \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
    a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, k} & a_{n, j + 1} & \cdots & a_{n, n}
    \end {vmatrix} x_k
 k = 1 ∑ n   a 1 , 1  a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  a 1 , j − 1  a 2 , j − 1  ⋮ a n , j − 1   a 1 , k  a 2 , k  ⋮ a n , k   a 1 , j + 1  a 2 , j + 1  ⋮ a n , j + 1   ⋯ ⋯ ⋱ ⋯  a 1 , n  a 2 , n  ⋮ a n , n    x k  
当 j ≠ k j \not = k j  = k   时,行列式存在完全相同的两列,值为 0 0 0  。当 j = k j = k j = k   时行列式就是 Δ \Delta Δ  ,因此有:
Δ ⋅ x j = Δ j     \Delta \cdot x_j = \Delta_j
 Δ ⋅ x j  = Δ j  
从而解得:
x j = Δ j Δ , ∀   1 ≤ j ≤ n     x_j = \frac {\Delta_j} {\Delta}, \forall \, 1 \le j \le n
 x j  = Δ Δ j   , ∀ 1 ≤ j ≤ n 
也即:原方程组如果有解,只有唯一一组解:
( x 1 , ⋯   , x j , ⋯   , x n ) = ( Δ 1 Δ , ⋯   , Δ j Δ , ⋯   , Δ n Δ )     (x_1, \cdots, x_j, \cdots, x_n) = \left( \frac {\Delta_1} \Delta, \cdots, \frac {\Delta_j} \Delta, \cdots, \frac {\Delta_n} \Delta \right)
 ( x 1  , ⋯ , x j  , ⋯ , x n  ) = ( Δ Δ 1   , ⋯ , Δ Δ j   , ⋯ , Δ Δ n   )