#  余子式与行列式展开 
定理 1 1 1  :
∣ A 1 , 1 0 A 2 , 1 A 2 , 2 ∣ = ∣ A 1 , 1 ∣ ∣ A 2 , 2 ∣ \begin {vmatrix}
A_{1, 1} & 0 \\
A_{2, 1} & A_{2, 2}
\end {vmatrix} = |A_{1, 1}| |A_{2, 2}|
  A 1 , 1  A 2 , 1   0 A 2 , 2    = ∣ A 1 , 1  ∣∣ A 2 , 2  ∣ 
例 1. 1. 1.   计算:
Δ = ∣ − 1 0 0 0 0 ∗ 2 3 0 0 ∗ 4 5 0 0 ∗ ∗ ∗ 1 3 ∗ ∗ ∗ 2 5 ∣ \Delta = \begin {vmatrix}
-1 & 0 & 0 & 0 & 0 \\
* & 2 & 3 & 0 & 0 \\
* & 4 & 5 & 0 & 0 \\
* & * & * & 1 & 3 \\
* & * & * & 2 & 5
\end {vmatrix}
 Δ =  − 1 ∗ ∗ ∗ ∗  0 2 4 ∗ ∗  0 3 5 ∗ ∗  0 0 0 1 2  0 0 0 3 5   
 
解 :
Δ = − 1 ∣ 2 3 4 5 ∣ ∣ 1 3 2 5 ∣ = − 2 \Delta = -1 \begin {vmatrix}
2 & 3 \\
4 & 5
\end {vmatrix} \begin {vmatrix}
1 & 3 \\
2 & 5
\end {vmatrix} = -2
 Δ = − 1  2 4  3 5    1 2  3 5   = − 2 
行列式
Δ = ∣ 0 ⋯ a 1 , j ⋯ 0 a 2 , 1 ⋯ a 2 , j ⋯ a 2 , n ⋮ ⋱ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j ⋯ a n , n ∣ \Delta = \begin {vmatrix}
0 & \cdots & a_{1, j} & \cdots & 0 \\
a_{2, 1} & \cdots & a_{2, j} & \cdots & a_{2, n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j} & \cdots & a_{n, n}
\end {vmatrix}
 Δ =  0 a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  a 1 , j  a 2 , j  ⋮ a n , j   ⋯ ⋯ ⋱ ⋯  0 a 2 , n  ⋮ a n , n    
的第 1 1 1   行除了第 j j j   列的 a 1 , j a_{1, j} a 1 , j    以外,其余元都是 0 0 0  ,试将 Δ \Delta Δ   化为 n − 1 n - 1 n − 1   阶行列式来计算。
将 Δ \Delta Δ   的第 j j j   列依次与它左边的 j − 1 j - 1 j − 1   列互换位置,经过 j − 1 j - 1 j − 1   次变号变为:
Δ 1 = ∣ a 1 , j 0 ⋯ 0 0 ⋯ 0 a 2 , j a 2 , 1 ⋯ a 2 , j − 1 a 2 , j + 1 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ a n , j a n , 1 ⋯ a n , j − 1 a n , j + 1 ⋯ a n , n ∣ = a 1 , j ⋅ ∣ a 2 , 1 ⋯ a 2 , j − 1 a 2 , j + 1 ⋯ a 2 , n ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j − 1 a n , j + 1 ⋯ a n , n ∣ = a 1 , j M 1 , j \Delta_1 = \begin {vmatrix}
a_{1, j} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
a_{2, j} & a_{2, 1} & \cdots & a_{2, j - 1} & a_{2, j + 1} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n, j} & a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, j + 1} & \cdots & a_{n, n}
\end {vmatrix} = a_{1, j} \cdot \begin {vmatrix}
a_{2, 1} & \cdots & a_{2, j - 1} & a_{2, j + 1} & \cdots & a_{2, n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, j + 1} & \cdots & a_{n, n}
\end {vmatrix} = a_{1, j} M_{1, j}
 Δ 1  =  a 1 , j  a 2 , j  ⋮ a n , j   0 a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  0 a 2 , j − 1  ⋮ a n , j − 1   0 a 2 , j + 1  ⋮ a n , j + 1   ⋯ ⋯ ⋱ ⋯  0 a 2 , n  ⋮ a n , n    = a 1 , j  ⋅  a 2 , 1  ⋮ a n , 1   ⋯ ⋱ ⋯  a 2 , j − 1  ⋮ a n , j − 1   a 2 , j + 1  ⋮ a n , j + 1   ⋯ ⋱ ⋯  a 2 , n  ⋮ a n , n    = a 1 , j  M 1 , j  
从而 Δ = ( − 1 ) j − 1 Δ 1 = a 1 , j ( − 1 ) j − 1 M 1 , j \Delta = (-1)^{j - 1} \Delta_1 = a_{1, j} (-1)^{j - 1} M_{1, j} Δ = ( − 1 ) j − 1 Δ 1  = a 1 , j  ( − 1 ) j − 1 M 1 , j  
( − 1 ) j − 1 M 1 , j (-1)^{j - 1} M_{1, j} ( − 1 ) j − 1 M 1 , j    称为 a 1 , j a_{1, j} a 1 , j    在 Δ \Delta Δ   中的代数余子式,记作 A 1 , j A_{1, j} A 1 , j   。这样,上式就成为:
Δ = a 1 , j A 1 , j \Delta = a_{1, j} A_{1, j}
 Δ = a 1 , j  A 1 , j  
而对于一般的行列式,可以将第一行 ( a 1 , 1 , ⋯   , a 1 , n ) (a_{1, 1}, \cdots, a_{1, n}) ( a 1 , 1  , ⋯ , a 1 , n  )   拆成 n n n   个至少含有 n − 1 n - 1 n − 1   个 0 0 0   向量的和:
( a 1 , 1 , ⋯   , a 1 , n ) = ( a 1 , 0 , ⋯   , 0 ) + ( 0 , a 2 , ⋯   , 0 ) + ⋯ + ( 0 , ⋯   , 0 , a 1 , n ) (a_{1, 1}, \cdots, a_{1, n}) = (a_1, 0, \cdots, 0) + (0, a_2, \cdots, 0) + \cdots + (0, \cdots, 0, a_{1, n})
 ( a 1 , 1  , ⋯ , a 1 , n  ) = ( a 1  , 0 , ⋯ , 0 ) + ( 0 , a 2  , ⋯ , 0 ) + ⋯ + ( 0 , ⋯ , 0 , a 1 , n  ) 
按照行列式的性质有:
Δ = ∣ a 1 , 1 ⋯ a 1 , j ⋯ a 1 , n a 2 , 1 ⋯ a 2 , j ⋯ a 2 , n ⋮ ⋱ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j ⋯ a n , n ∣ = ∣ a 1 , 1 0 ⋯ 0 a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ a n , 1 a n , 2 ⋯ a n , n ∣ + ⋯ + ∣ 0 ⋯ 0 a 1 , j 0 ⋯ 0 a 2 , 1 ⋯ a 2 , j − 1 a 2 , j a 2 , j + 1 ⋯ a 2 , n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j − 1 a n , j a n , j + 1 ⋯ a n , n ∣ + ⋯ + ∣ 0 ⋯ 0 a 1 , n a 2 , 1 ⋯ a 2 , n − 1 a 2 , n ⋮ ⋱ ⋮ ⋮ a n , 1 ⋯ a n , n − 1 a n , n ∣ = ∑ j = 1 n a 1 , j A 1 , j \Delta = \begin {vmatrix}
a_{1, 1} & \cdots & a_{1, j} & \cdots & a_{1, n} \\
a_{2, 1} & \cdots & a_{2, j} & \cdots & a_{2, n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j} & \cdots & a_{n, n}
\end {vmatrix} = \begin {vmatrix}
a_{1, 1} & 0 & \cdots & 0 \\
a_{2, 1} & a_{2, 2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end {vmatrix} + \cdots + \begin {vmatrix}
0 & \cdots & 0 & a_{1, j} & 0 & \cdots & 0 \\
a_{2, 1} & \cdots & a_{2, j - 1} & a_{2, j} & a_{2, j + 1} & \cdots & a_{2, n} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, j} & a_{n, j + 1} & \cdots & a_{n, n}
\end {vmatrix} + \cdots + \begin {vmatrix}
0 & \cdots & 0 & a_{1, n} \\
a_{2, 1} & \cdots & a_{2, n - 1} & a_{2, n} \\
\vdots & \ddots & \vdots & \vdots \\
a_{n, 1} & \cdots & a_{n, n - 1} & a_{n, n}
\end {vmatrix} = \sum_{j = 1}^n a_{1, j} A_{1, j}
 Δ =  a 1 , 1  a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  a 1 , j  a 2 , j  ⋮ a n , j   ⋯ ⋯ ⋱ ⋯  a 1 , n  a 2 , n  ⋮ a n , n    =  a 1 , 1  a 2 , 1  ⋮ a n , 1   0 a 2 , 2  ⋮ a n , 2   ⋯ ⋯ ⋱ ⋯  0 a 2 , n  ⋮ a n , n    + ⋯ +  0 a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  0 a 2 , j − 1  ⋮ a n , j − 1   a 1 , j  a 2 , j  ⋮ a n , j   0 a 2 , j + 1  ⋮ a n , j + 1   ⋯ ⋯ ⋱ ⋯  0 a 2 , n  ⋮ a n , n    + ⋯ +  0 a 2 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯  0 a 2 , n − 1  ⋮ a n , n − 1   a 1 , n  a 2 , n  ⋮ a n , n    = j = 1 ∑ n  a 1 , j  A 1 , j  
这就得出了:
引理 1 1 1  :行列式 Δ \Delta Δ   的值,等于它的第 1 1 1   行各元素分别乘以它们的代数余子式所得的乘积之和:
Δ = ∑ j = 1 n a 1 , j A 1 , j \Delta = \sum_{j = 1}^n a_{1, j} A_{1, j}
 Δ = j = 1 ∑ n  a 1 , j  A 1 , j  
这称为行列式按第一行展开。
行列式也可按第 i i i   行展开:
Δ = ∣ a 1 , 1 ⋯ a 1 , j ⋯ a 1 , n ⋮ ⋱ ⋮ ⋱ ⋮ a i − 1 , j ⋯ a i − 1 , j ⋯ a i − 1 , n a i , 1 ⋯ a i , j ⋯ a i , n a i + 1 , 1 ⋯ a i + 1 , j ⋯ a i + 1 , n ⋮ ⋱ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j ⋯ a n , n ∣ = ( − 1 ) i − 1 ∣ a i , 1 ⋯ a i , j ⋯ a i , n a 1 , 1 ⋯ a 1 , j ⋯ a 1 , n ⋮ ⋱ ⋮ ⋱ ⋮ a i − 1 , j ⋯ a i − 1 , j ⋯ a i − 1 , n a i + 1 , 1 ⋯ a i + 1 , j ⋯ a i + 1 , n ⋮ ⋱ ⋮ ⋱ ⋮ a n , 1 ⋯ a n , j ⋯ a n , n ∣ = ( − 1 ) i − 1 ∑ j = 1 n a i , j ⋅ ( − 1 ) 1 + j M i , j = ∑ j = 1 n a i , j ⋅ ( − 1 ) i + j M i , j = ∑ j = 1 n a i , j A i , j \Delta = \begin {vmatrix}
a_{1, 1} & \cdots & a_{1, j} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{i - 1, j} & \cdots & a_{i - 1, j} & \cdots & a_{i - 1, n} \\
a_{i, 1} & \cdots & a_{i, j} & \cdots & a_{i, n} \\
a_{i + 1, 1} & \cdots & a_{i + 1, j} & \cdots & a_{i + 1, n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j} & \cdots & a_{n, n}
\end {vmatrix} = (-1)^{i - 1} \begin {vmatrix}
a_{i, 1} & \cdots & a_{i, j} & \cdots & a_{i, n} \\
a_{1, 1} & \cdots & a_{1, j} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{i - 1, j} & \cdots & a_{i - 1, j} & \cdots & a_{i - 1, n} \\
a_{i + 1, 1} & \cdots & a_{i + 1, j} & \cdots & a_{i + 1, n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, j} & \cdots & a_{n, n}
\end {vmatrix} = (-1)^{i - 1} \sum_{j = 1}^n a_{i, j} \cdot (-1)^{1 + j} M_{i, j} = \sum_{j = 1}^n a_{i, j} \cdot (-1)^{i + j} M_{i, j} = \sum_{j = 1}^n a_{i, j} A_{i, j}
 Δ =  a 1 , 1  ⋮ a i − 1 , j  a i , 1  a i + 1 , 1  ⋮ a n , 1   ⋯ ⋱ ⋯ ⋯ ⋯ ⋱ ⋯  a 1 , j  ⋮ a i − 1 , j  a i , j  a i + 1 , j  ⋮ a n , j   ⋯ ⋱ ⋯ ⋯ ⋯ ⋱ ⋯  a 1 , n  ⋮ a i − 1 , n  a i , n  a i + 1 , n  ⋮ a n , n    = ( − 1 ) i − 1  a i , 1  a 1 , 1  ⋮ a i − 1 , j  a i + 1 , 1  ⋮ a n , 1   ⋯ ⋯ ⋱ ⋯ ⋯ ⋱ ⋯  a i , j  a 1 , j  ⋮ a i − 1 , j  a i + 1 , j  ⋮ a n , j   ⋯ ⋯ ⋱ ⋯ ⋯ ⋱ ⋯  a i , n  a 1 , n  ⋮ a i − 1 , n  a i + 1 , n  ⋮ a n , n    = ( − 1 ) i − 1 j = 1 ∑ n  a i , j  ⋅ ( − 1 ) 1 + j M i , j  = j = 1 ∑ n  a i , j  ⋅ ( − 1 ) i + j M i , j  = j = 1 ∑ n  a i , j  A i , j  
其中 M i , j M_{i, j} M i , j    称为 a i , j a_{i, j} a i , j    的余子式,A i , j = ( − 1 ) i + j M i , j A_{i, j} = (-1)^{i + j} M_{i, j} A i , j  = ( − 1 ) i + j M i , j    称为 a i , j a_{i, j} a i , j    的代数余子式,同样可以得到行列式按列展开的公式。
记 M = A ( i 1 i 2 ⋯ i r k 1 k 2 ⋯ k r ) M = A \begin {pmatrix} i_1 & i_2 & \cdots & i_r \\ k_1 & k_2 & \cdots & k_r \end {pmatrix} M = A ( i 1  k 1   i 2  k 2   ⋯ ⋯  i r  k r   )   是 A A A   中第 i 1 , i 2 , ⋯   , i r i_1, i_2, \cdots, i_r i 1  , i 2  , ⋯ , i r    行和第 k 1 , k 2 , ⋯   , k r k_1, k_2, \cdots, k_r k 1  , k 2  , ⋯ , k r    列交叉处的元组成的子式,则 A ( i r + 1 ⋯ i n k r + 1 ⋯ k n ) A \begin {pmatrix} i_{r + 1} &  \cdots & i_n \\ k_{r + 1} & \cdots & k_n \end {pmatrix} A ( i r + 1  k r + 1   ⋯ ⋯  i n  k n   )   是在 A A A   中将 M M M   所在的 r r r   行和 r r r   列全部删去剩下的元按原来的顺序排成的子式,称为 M M M   的余子式,M M M   的余子式与 ( − 1 ) i 1 + i 2 + ⋯ + i r + k 1 + k 2 + ⋯ + k r (-1)^{i_1 + i_2 + \cdots + i_r + k_1 + k_2 + \cdots + k_r} ( − 1 ) i 1  + i 2  + ⋯ + i r  + k 1  + k 2  + ⋯ + k r    的乘积称为 M M M   的代数余子式,由此我们得到:
定理 2 2 2  (拉普拉斯展开定理) :设 ∣ A ∣ |A| ∣ A ∣   是 n n n   阶行列式,对任意正整数 r < n r < n r < n  ,任意取定 r r r   个指标 i 1 < i 2 < ⋯ < i r ≤ n i_1 < i_2 < \cdots < i_r \le n i 1  < i 2  < ⋯ < i r  ≤ n  ,则 ∣ A ∣ |A| ∣ A ∣   的值等于它的第 i 1 , i 2 , ⋯   , i r i_1, i_2, \cdots, i_r i 1  , i 2  , ⋯ , i r    行(或列)元组成的所有的 r r r   阶子式分别于它们的代数余子式的乘积之和。
#  习题 
计算 n n n   阶行列式:
(1) ∣ a b 0 ⋯ 0 0 0 a b ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ a b b 0 0 ⋯ 0 a ∣ \begin {vmatrix} a & b & 0 & \cdots & 0 & 0 \\ 0 & a & b & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ b & 0 & 0 & \cdots & 0 & a \end {vmatrix}  a 0 ⋮ 0 b  b a ⋮ 0 0  0 b ⋮ 0 0  ⋯ ⋯ ⋱ ⋯ ⋯  0 0 ⋮ a 0  0 0 ⋮ b a   
(2) ∣ x 1 a 1 a 2 ⋯ a n − 2 a n − 1 a 1 x 2 a 2 ⋯ a n − 2 a n − 1 a 1 a 2 x 3 ⋯ a n − 2 a n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ a 1 a 2 a 3 ⋯ a n − 1 x n ∣ \begin {vmatrix} x_1 & a_1 & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ a_1 & x_2 & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ a_1 & a_2 & x_3 & \cdots & a_{n - 2} & a_{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_{n - 1} & x_n \end {vmatrix}  x 1  a 1  a 1  ⋮ a 1   a 1  x 2  a 2  ⋮ a 2   a 2  a 2  x 3  ⋮ a 3   ⋯ ⋯ ⋯ ⋱ ⋯  a n − 2  a n − 2  a n − 2  ⋮ a n − 1   a n − 1  a n − 1  a n − 1  ⋮ x n    
(3) ∣ α + β α β 0 ⋯ 0 0 1 α + β α β ⋯ 0 0 0 1 α + β ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ α + β α β 0 0 0 ⋯ 1 α + β ∣ \begin {vmatrix} \alpha + \beta & \alpha \beta & 0 & \cdots & 0 & 0 \\ 1 & \alpha + \beta & \alpha \beta & \cdots & 0 & 0 \\ 0 & 1 & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \beta \\ 0 & 0 & 0 & \cdots & 1 & \alpha + \beta \end {vmatrix}  α + β 1 0 ⋮ 0 0  α β α + β 1 ⋮ 0 0  0 α β α + β ⋮ 0 0  ⋯ ⋯ ⋯ ⋱ ⋯ ⋯  0 0 0 ⋮ α + β 1  0 0 0 ⋮ α β α + β   
(4) ∣ a b 0 ⋯ 0 0 c a b ⋯ 0 0 0 c a ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ a b 0 0 0 ⋯ c a ∣ \begin {vmatrix} a & b & 0 & \cdots & 0 & 0 \\ c & a & b & \cdots &0 & 0 \\ 0 & c & a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ 0 & 0 & 0 & \cdots & c & a \end {vmatrix}  a c 0 ⋮ 0 0  b a c ⋮ 0 0  0 b a ⋮ 0 0  ⋯ ⋯ ⋯ ⋱ ⋯ ⋯  0 0 0 ⋮ a c  0 0 0 ⋮ b a   
(5) 对角元都为 0 0 0  ,主对角线上方元素都为 1 1 1  ,下方元素都为 − 1 -1 − 1   的偶数阶行列式:
∣ 0 1 ⋯ 1 − 1 0 ⋯ 1 ⋮ ⋮ ⋱ ⋮ − 1 − 1 ⋯ 0 ∣ \begin {vmatrix}
0 & 1 & \cdots & 1 \\
-1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & 0
\end {vmatrix}
  0 − 1 ⋮ − 1  1 0 ⋮ − 1  ⋯ ⋯ ⋱ ⋯  1 1 ⋮ 0   
(1) 解:
∣ a b 0 ⋯ 0 0 0 a b ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ a b b 0 0 ⋯ 0 a ∣ = − b a ( 1 ) + ( 2 ) , ⋯   , − b a ( n − 1 ) + ( n ) ∣ a 0 0 ⋯ 0 0 0 a 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ a 0 b − b 2 a b 3 a 2 ⋯ ( − 1 ) n b n − 1 a n − 2 ( − 1 ) n + 1 b n a n − 1 ∣ = ( − 1 ) n + 1 b n     \begin {vmatrix} a & b & 0 & \cdots & 0 & 0 \\ 0 & a & b & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ b & 0 & 0 & \cdots & 0 & a \end {vmatrix} \xlongequal {- \frac b a (1) + (2), \cdots, - \frac b a (n - 1) + (n)} \begin {vmatrix}
    a & 0 & 0 & \cdots & 0 & 0 \\
    0 & a & 0 & \cdots & 0 & 0 \\
    \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
    0 & 0 & 0 & \cdots & a & 0 \\
    b & - \frac {b^2} a & \frac {b^3} {a^2} & \cdots & (-1)^{n} \frac {b^{n - 1}} {a^{n - 2}} & (-1)^{n + 1} \frac {b^n} {a^{n - 1}}
    \end {vmatrix} = (-1)^{n + 1} b^n
  a 0 ⋮ 0 b  b a ⋮ 0 0  0 b ⋮ 0 0  ⋯ ⋯ ⋱ ⋯ ⋯  0 0 ⋮ a 0  0 0 ⋮ b a   − a b  ( 1 ) + ( 2 ) , ⋯ , − a b  ( n − 1 ) + ( n )  a 0 ⋮ 0 b  0 a ⋮ 0 − a b 2   0 0 ⋮ 0 a 2 b 3   ⋯ ⋯ ⋱ ⋯ ⋯  0 0 ⋮ a ( − 1 ) n a n − 2 b n − 1   0 0 ⋮ 0 ( − 1 ) n + 1 a n − 1 b n    = ( − 1 ) n + 1 b n 
 
(2) 解:
Δ = ∣ x 1 − a 1 a 1 − x 2 0 ⋯ 0 0 0 x 2 − a 2 a 2 − x 3 ⋯ 0 0 0 0 x 3 − a 3 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ x n − 1 − a n − 1 a n − 1 − x n a 1 a 2 a 3 ⋯ a n − 1 x n ∣ = ∣ x 1 − a 1 0 0 ⋯ 0 0 x 2 − a 2 0 ⋯ 0 0 0 x 3 − a 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ a 1 a 2 + x 2 − a 1 x 1 − a 1 a 1 a 3 + x 3 − a 2 x 2 − a 2 a 2 + ( x 3 − a 2 ) ( x 2 − a 1 ) ( x 2 − a 2 ) ( x 1 − a 1 ) a 1 ⋯ x n + ∑ i = 1 n − 1 ( ∏ i = 1 n − 1 x j + 1 − a j x j − a j a i ) ∣ = [ x n + ∑ i = 1 n − 1 ( ∏ i = 1 n − 1 x j + 1 − a j x j − a j a i ) ] ∏ i = 1 n − 1 ( x i − a i )     \Delta = \begin {vmatrix}
    x_1 - a_1 & a_1 - x_2 & 0 & \cdots & 0 & 0 \\
    0 & x_2 - a_2 & a_2 - x_3 & \cdots & 0 & 0 \\
    0 & 0 & x_3 - a_3 & \cdots & 0 & 0 \\
    \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
    0 & 0 & 0 & \cdots & x_{n - 1} - a_{n - 1} & a_{n - 1} - x_n \\
    a_1 & a_2 & a_3 & \cdots & a_{n - 1} & x_n
    \end {vmatrix} = \begin {vmatrix}
    x_1 - a_1 & 0 & 0 & \cdots & 0 \\
    0 & x_2 - a_2 & 0 & \cdots & 0 \\
    0 & 0 & x_3 - a_3 & \cdots & 0 \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    a_1 & a_2 + \frac {x_2 - a_1} {x_1 - a_1} a_1 & a_3 + \frac {x_3 - a_2} {x_2 - a_2} a_2 + \frac {(x_3 - a_2)(x_2 - a_1)} {(x_2 - a_2)(x_1 - a_1)} a_1 & \cdots & x_n + \sum\limits_{i = 1}^{n - 1} \left( \prod\limits_{i = 1}^{n - 1} \frac {x_{j + 1} - a_j} {x_j - a_j} a_i \right)
    \end {vmatrix} = \left[ x_n + \sum\limits_{i = 1}^{n - 1} \left( \prod\limits_{i = 1}^{n - 1} \frac {x_{j + 1} - a_j} {x_j - a_j} a_i \right) \right] \prod_{i = 1}^{n - 1} (x_i - a_i)
 Δ =  x 1  − a 1  0 0 ⋮ 0 a 1   a 1  − x 2  x 2  − a 2  0 ⋮ 0 a 2   0 a 2  − x 3  x 3  − a 3  ⋮ 0 a 3   ⋯ ⋯ ⋯ ⋱ ⋯ ⋯  0 0 0 ⋮ x n − 1  − a n − 1  a n − 1   0 0 0 ⋮ a n − 1  − x n  x n    =  x 1  − a 1  0 0 ⋮ a 1   0 x 2  − a 2  0 ⋮ a 2  + x 1  − a 1  x 2  − a 1   a 1   0 0 x 3  − a 3  ⋮ a 3  + x 2  − a 2  x 3  − a 2   a 2  + ( x 2  − a 2  ) ( x 1  − a 1  ) ( x 3  − a 2  ) ( x 2  − a 1  )  a 1   ⋯ ⋯ ⋯ ⋱ ⋯  0 0 0 ⋮ x n  + i = 1 ∑ n − 1  ( i = 1 ∏ n − 1  x j  − a j  x j + 1  − a j   a i  )   = [ x n  + i = 1 ∑ n − 1  ( i = 1 ∏ n − 1  x j  − a j  x j + 1  − a j   a i  ) ] i = 1 ∏ n − 1  ( x i  − a i  ) 
 
(3) 解:
Δ = ∣ α + β 0 0 ⋯ 0 1 α 2 + α β + β 2 α + β 0 ⋯ 0 0 1 α 3 + α 2 β + α β 2 + β 3 α 2 + α β + β 2 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ ∑ i = 0 n α i β n − i ∑ i = 0 n − 1 α i β n − 1 − i ∣ = ∑ i = 0 n α i β n − i     \Delta = \begin {vmatrix}
    \alpha + \beta & 0 & 0 & \cdots & 0 \\
    1 & \frac {\alpha^2 + \alpha \beta + \beta^2} {\alpha + \beta} & 0 & \cdots & 0 \\
    0 & 1 & \frac {\alpha^3 + \alpha^2 \beta + \alpha \beta^2 + \beta^3} {\alpha^2 + \alpha \beta + \beta^2} & \cdots & 0 & 0 \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    0 & 0 & 0 & \cdots & \frac {\sum\limits_{i = 0}^n \alpha^i \beta^{n - i}} {\sum\limits_{i = 0}^{n - 1} \alpha^i \beta^{n - 1 - i}}
    \end {vmatrix} = \sum\limits_{i = 0}^n \alpha^i \beta^{n - i}
 Δ =  α + β 1 0 ⋮ 0  0 α + β α 2 + α β + β 2  1 ⋮ 0  0 0 α 2 + α β + β 2 α 3 + α 2 β + α β 2 + β 3  ⋮ 0  ⋯ ⋯ ⋯ ⋱ ⋯  0 0 0 ⋮ i = 0 ∑ n − 1  α i β n − 1 − i i = 0 ∑ n  α i β n − i   0  = i = 0 ∑ n  α i β n − i 
 
(4) 解:
Δ = c n ∣ a c b c 0 ⋯ 0 0 1 a c b c ⋯ 0 0 0 1 a c ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ a c b c 0 0 0 ⋯ 1 a c ∣     \Delta = c^n \begin {vmatrix}
    \frac a c & \frac b c & 0 & \cdots & 0 & 0 \\
    1 & \frac a c & \frac b c & \cdots & 0 & 0 \\
    0 & 1 & \frac a c & \cdots & 0 & 0 \\
    \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
    0 & 0 & 0 & \cdots & \frac a c & \frac b c \\
    0 & 0 & 0 & \cdots & 1 & \frac a c 
    \end {vmatrix}
 Δ = c n  c a  1 0 ⋮ 0 0  c b  c a  1 ⋮ 0 0  0 c b  c a  ⋮ 0 0  ⋯ ⋯ ⋯ ⋱ ⋯ ⋯  0 0 0 ⋮ c a  1  0 0 0 ⋮ c b  c a    
令 a c = α + β , b c = α β \dfrac a c = \alpha + \beta, \dfrac b c = \alpha \beta c a  = α + β , c b  = α β  ,可解得 α = a + a 2 − 2 b c 2 c , β = a − a 2 − 2 b c 2 c \alpha = \dfrac {a + \sqrt {a^2 - 2bc}} {2c}, \beta = \dfrac {a - \sqrt {a^2 - 2bc}} {2c} α = 2 c a + a 2 − 2 b c   , β = 2 c a − a 2 − 2 b c    
 当 c = 0 c = 0 c = 0   时,显然 Δ = a n \Delta = a^n Δ = a n  ; 
当 c ≠ 0 c \not = 0 c  = 0   时,由 ( 3 ) (3) ( 3 )   可知:
Δ = ∑ i = 0 n ( a + a 2 − 2 b c ) i ( a − a 2 − 2 b c ) n − i 2 n     \Delta = \frac {\sum\limits_{i = 0}^n (a + \sqrt {a^2 - 2bc})^i (a - \sqrt {a^2 - 2bc})^{n - i}} {2^n}
 Δ = 2 n i = 0 ∑ n  ( a + a 2 − 2 b c  ) i ( a − a 2 − 2 b c  ) n − i  
 
(5) 解:
Δ n = ∣ 0 1 ⋯ 0 − 1 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ − 1 − 1 ⋯ 1 ∣ + ∣ 0 1 ⋯ 1 − 1 0 ⋯ 1 ⋮ ⋮ ⋱ ⋮ − 1 − 1 ⋯ − 1 ∣ = Δ n − 1 + ∣ − 1 0 ⋯ 0 − 2 − 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ − 1 − 1 ⋯ − 1 ∣ = Δ n − 1 + ( − 1 ) n = Δ n − 2     \Delta_n = \begin {vmatrix}
    0 & 1 & \cdots & 0 \\
    -1 & 0 & \cdots & 0 \\
    \vdots & \vdots & \ddots & \vdots \\
    -1 & -1 & \cdots & 1
    \end {vmatrix} + \begin {vmatrix}
    0 & 1 & \cdots & 1 \\
    -1 & 0 & \cdots & 1 \\
    \vdots & \vdots & \ddots & \vdots \\
    -1 & -1 & \cdots & -1
    \end {vmatrix} = \Delta_{n - 1} + \begin {vmatrix}
    -1 & 0 & \cdots & 0 \\
    -2 & -1 & \cdots & 0 \\
    \vdots & \vdots & \ddots & \vdots \\
    -1 & -1 & \cdots & -1
    \end {vmatrix} = \Delta_{n - 1} + (-1)^n = \Delta_{n - 2}
 Δ n  =  0 − 1 ⋮ − 1  1 0 ⋮ − 1  ⋯ ⋯ ⋱ ⋯  0 0 ⋮ 1   +  0 − 1 ⋮ − 1  1 0 ⋮ − 1  ⋯ ⋯ ⋱ ⋯  1 1 ⋮ − 1   = Δ n − 1  +  − 1 − 2 ⋮ − 1  0 − 1 ⋮ − 1  ⋯ ⋯ ⋱ ⋯  0 0 ⋮ − 1   = Δ n − 1  + ( − 1 ) n = Δ n − 2  
由于是偶数阶行列式,且 ∣ 0 1 − 1 0 ∣ = 1 \begin {vmatrix} 0 & 1 \\ -1 & 0 \end {vmatrix} = 1  0 − 1  1 0   = 1  ,因此该行列式值为 1 1 1  。
 
 
求 4 4 4   阶行列式 D 4 = ∣ 3 0 4 0 2 2 2 2 0 − 7 0 0 5 3 − 2 2 ∣ D_4 = \begin {vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end {vmatrix} D 4  =  3 2 0 5  0 2 − 7 3  4 2 0 − 2  0 2 0 2     中第四行各元素余子式之和。
解:5 5 5   的余子式为:
∣ 0 4 0 2 2 2 − 7 0 0 ∣ = − 7 ∣ 4 0 2 2 ∣ = − 56     \begin {vmatrix}
    0 & 4 & 0 \\
    2 & 2 & 2 \\
    -7 & 0 & 0
    \end {vmatrix} = -7 \begin {vmatrix}
    4 & 0 \\ 2 & 2
    \end {vmatrix} = -56
  0 2 − 7  4 2 0  0 2 0   = − 7  4 2  0 2   = − 56 
3 3 3   的余子式为:
∣ 3 4 0 2 2 2 0 0 0 ∣ = 0     \begin {vmatrix}
    3 & 4 & 0 \\
    2 & 2 & 2 \\
    0 & 0 & 0
    \end {vmatrix} = 0
  3 2 0  4 2 0  0 2 0   = 0 
− 2 -2 − 2   的余子式为:
∣ 3 0 0 2 2 2 0 − 7 0 ∣ = − 7 ∣ 0 3 2 2 ∣ = 42     \begin {vmatrix}
    3 & 0 & 0 \\
    2 & 2 & 2 \\
    0 & -7 & 0
    \end {vmatrix} = -7 \begin {vmatrix}
    0 & 3 \\ 2 & 2
    \end {vmatrix} = 42
  3 2 0  0 2 − 7  0 2 0   = − 7  0 2  3 2   = 42 
2 2 2   的余子式为:
∣ 3 0 4 2 2 2 0 − 7 0 ∣ = − 7 ∣ 4 3 2 2 ∣ = − 14     \begin {vmatrix}
    3 & 0 & 4 \\
    2 & 2 & 2 \\
    0 & -7 & 0
    \end {vmatrix} = -7 \begin {vmatrix}
    4 & 3 \\ 2 & 2
    \end {vmatrix} = -14
  3 2 0  0 2 − 7  4 2 0   = − 7  4 2  3 2   = − 14 
则余子式之和为 − 28 -28 − 28 
 
 
证明 n n n   阶行列式:
∣ cos  θ 1 0 ⋯ 0 0 1 2 cos  θ 1 ⋯ 0 0 0 1 2 cos  θ ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ 2 cos  θ 1 0 0 0 ⋯ 1 2 cos  θ ∣ = cos  n θ \begin {vmatrix}
\cos \theta & 1 & 0 & \cdots & 0 & 0 \\
1 & 2 \cos \theta & 1 & \cdots & 0 & 0 \\
0 & 1 & 2 \cos \theta & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2 \cos \theta & 1 \\
0 & 0 & 0 & \cdots & 1 & 2 \cos \theta
\end {vmatrix} = \cos n \theta
  cos θ 1 0 ⋮ 0 0  1 2 cos θ 1 ⋮ 0 0  0 1 2 cos θ ⋮ 0 0  ⋯ ⋯ ⋯ ⋱ ⋯ ⋯  0 0 0 ⋮ 2 cos θ 1  0 0 0 ⋮ 1 2 cos θ   = cos n θ 
证明:
Δ = ∣ cos  θ 0 0 ⋯ 0 0 1 cos  2 θ cos  θ 0 ⋯ 0 0 0 1 cos  3 θ cos  2 θ ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ cos  ( n − 1 ) θ cos  ( n − 2 ) θ 0 0 0 0 ⋯ 1 cos  n θ cos  ( n − 1 ) θ ∣ = cos  n θ     \Delta = \begin {vmatrix}
    \cos \theta & 0 & 0 & \cdots & 0 & 0 \\
    1 & \frac {\cos 2 \theta} {\cos \theta} & 0 & \cdots & 0 & 0 \\
    0 & 1 & \frac {\cos 3 \theta} {\cos 2 \theta} & \cdots & 0 & 0 \\
    \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
    0 & 0 & 0 & \cdots & \frac {\cos (n - 1) \theta} {\cos (n - 2) \theta} & 0 \\
    0 & 0 & 0 & \cdots & 1 & \frac {\cos n \theta} {\cos (n - 1) \theta}
    \end {vmatrix} = \cos n \theta
 Δ =  cos θ 1 0 ⋮ 0 0  0 c o s θ c o s 2 θ  1 ⋮ 0 0  0 0 c o s 2 θ c o s 3 θ  ⋮ 0 0  ⋯ ⋯ ⋯ ⋱ ⋯ ⋯  0 0 0 ⋮ c o s ( n − 2 ) θ c o s ( n − 1 ) θ  1  0 0 0 ⋮ 0 c o s ( n − 1 ) θ c o s n θ    = cos n θ 
 
 
求 D 4 = ∣ 1 1 1 1 1 2 3 x 1 4 9 x 2 1 8 27 x 3 ∣ D_4 = \begin {vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & x \\ 1 & 4 & 9 & x^2 \\ 1 & 8 & 27 & x^3 \end {vmatrix} D 4  =  1 1 1 1  1 2 4 8  1 3 9 27  1 x x 2 x 3     展开式中的二次项 x 2 x^2 x 2   的系数。
解:容易发现 D 4 D_4 D 4    实际上是个范德蒙德行列式,因此 D 4 = 2 ( x − 1 ) ( x − 2 ) ( x − 3 ) D_4 = 2 (x - 1) (x - 2) (x - 3) D 4  = 2 ( x − 1 ) ( x − 2 ) ( x − 3 )  ,因此二次项的系数为 − 12 -12 − 12  。