# 余子式与行列式展开

定理 11

A1,10A2,1A2,2=A1,1A2,2\begin {vmatrix} A_{1, 1} & 0 \\ A_{2, 1} & A_{2, 2} \end {vmatrix} = |A_{1, 1}| |A_{2, 2}|

1.1. 计算:

Δ=10000230045001325\Delta = \begin {vmatrix} -1 & 0 & 0 & 0 & 0 \\ * & 2 & 3 & 0 & 0 \\ * & 4 & 5 & 0 & 0 \\ * & * & * & 1 & 3 \\ * & * & * & 2 & 5 \end {vmatrix}

Δ=123451325=2\Delta = -1 \begin {vmatrix} 2 & 3 \\ 4 & 5 \end {vmatrix} \begin {vmatrix} 1 & 3 \\ 2 & 5 \end {vmatrix} = -2

行列式

Δ=0a1,j0a2,1a2,ja2,nan,1an,jan,n\Delta = \begin {vmatrix} 0 & \cdots & a_{1, j} & \cdots & 0 \\ a_{2, 1} & \cdots & a_{2, j} & \cdots & a_{2, n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, j} & \cdots & a_{n, n} \end {vmatrix}

的第 11 行除了第 jj 列的 a1,ja_{1, j} 以外,其余元都是 00,试将 Δ\Delta 化为 n1n - 1 阶行列式来计算。

Δ\Delta 的第 jj 列依次与它左边的 j1j - 1 列互换位置,经过 j1j - 1 次变号变为:

Δ1=a1,j0000a2,ja2,1a2,j1a2,j+1a2,nan,jan,1an,j1an,j+1an,n=a1,ja2,1a2,j1a2,j+1a2,nan,1an,j1an,j+1an,n=a1,jM1,j\Delta_1 = \begin {vmatrix} a_{1, j} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ a_{2, j} & a_{2, 1} & \cdots & a_{2, j - 1} & a_{2, j + 1} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n, j} & a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, j + 1} & \cdots & a_{n, n} \end {vmatrix} = a_{1, j} \cdot \begin {vmatrix} a_{2, 1} & \cdots & a_{2, j - 1} & a_{2, j + 1} & \cdots & a_{2, n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, j + 1} & \cdots & a_{n, n} \end {vmatrix} = a_{1, j} M_{1, j}

从而 Δ=(1)j1Δ1=a1,j(1)j1M1,j\Delta = (-1)^{j - 1} \Delta_1 = a_{1, j} (-1)^{j - 1} M_{1, j}

(1)j1M1,j(-1)^{j - 1} M_{1, j} 称为 a1,ja_{1, j}Δ\Delta 中的代数余子式,记作 A1,jA_{1, j}。这样,上式就成为:

Δ=a1,jA1,j\Delta = a_{1, j} A_{1, j}

而对于一般的行列式,可以将第一行 (a1,1,,a1,n)(a_{1, 1}, \cdots, a_{1, n}) 拆成 nn 个至少含有 n1n - 100 向量的和:

(a1,1,,a1,n)=(a1,0,,0)+(0,a2,,0)++(0,,0,a1,n)(a_{1, 1}, \cdots, a_{1, n}) = (a_1, 0, \cdots, 0) + (0, a_2, \cdots, 0) + \cdots + (0, \cdots, 0, a_{1, n})

按照行列式的性质有:

Δ=a1,1a1,ja1,na2,1a2,ja2,nan,1an,jan,n=a1,100a2,1a2,2a2,nan,1an,2an,n++00a1,j00a2,1a2,j1a2,ja2,j+1a2,nan,1an,j1an,jan,j+1an,n++00a1,na2,1a2,n1a2,nan,1an,n1an,n=j=1na1,jA1,j\Delta = \begin {vmatrix} a_{1, 1} & \cdots & a_{1, j} & \cdots & a_{1, n} \\ a_{2, 1} & \cdots & a_{2, j} & \cdots & a_{2, n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, j} & \cdots & a_{n, n} \end {vmatrix} = \begin {vmatrix} a_{1, 1} & 0 & \cdots & 0 \\ a_{2, 1} & a_{2, 2} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & a_{n, 2} & \cdots & a_{n, n} \end {vmatrix} + \cdots + \begin {vmatrix} 0 & \cdots & 0 & a_{1, j} & 0 & \cdots & 0 \\ a_{2, 1} & \cdots & a_{2, j - 1} & a_{2, j} & a_{2, j + 1} & \cdots & a_{2, n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, j - 1} & a_{n, j} & a_{n, j + 1} & \cdots & a_{n, n} \end {vmatrix} + \cdots + \begin {vmatrix} 0 & \cdots & 0 & a_{1, n} \\ a_{2, 1} & \cdots & a_{2, n - 1} & a_{2, n} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n, 1} & \cdots & a_{n, n - 1} & a_{n, n} \end {vmatrix} = \sum_{j = 1}^n a_{1, j} A_{1, j}

这就得出了:

引理 11:行列式 Δ\Delta 的值,等于它的第 11 行各元素分别乘以它们的代数余子式所得的乘积之和:

Δ=j=1na1,jA1,j\Delta = \sum_{j = 1}^n a_{1, j} A_{1, j}

这称为行列式按第一行展开。

行列式也可按第 ii 行展开:

Δ=a1,1a1,ja1,nai1,jai1,jai1,nai,1ai,jai,nai+1,1ai+1,jai+1,nan,1an,jan,n=(1)i1ai,1ai,jai,na1,1a1,ja1,nai1,jai1,jai1,nai+1,1ai+1,jai+1,nan,1an,jan,n=(1)i1j=1nai,j(1)1+jMi,j=j=1nai,j(1)i+jMi,j=j=1nai,jAi,j\Delta = \begin {vmatrix} a_{1, 1} & \cdots & a_{1, j} & \cdots & a_{1, n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i - 1, j} & \cdots & a_{i - 1, j} & \cdots & a_{i - 1, n} \\ a_{i, 1} & \cdots & a_{i, j} & \cdots & a_{i, n} \\ a_{i + 1, 1} & \cdots & a_{i + 1, j} & \cdots & a_{i + 1, n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, j} & \cdots & a_{n, n} \end {vmatrix} = (-1)^{i - 1} \begin {vmatrix} a_{i, 1} & \cdots & a_{i, j} & \cdots & a_{i, n} \\ a_{1, 1} & \cdots & a_{1, j} & \cdots & a_{1, n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i - 1, j} & \cdots & a_{i - 1, j} & \cdots & a_{i - 1, n} \\ a_{i + 1, 1} & \cdots & a_{i + 1, j} & \cdots & a_{i + 1, n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, j} & \cdots & a_{n, n} \end {vmatrix} = (-1)^{i - 1} \sum_{j = 1}^n a_{i, j} \cdot (-1)^{1 + j} M_{i, j} = \sum_{j = 1}^n a_{i, j} \cdot (-1)^{i + j} M_{i, j} = \sum_{j = 1}^n a_{i, j} A_{i, j}

其中 Mi,jM_{i, j} 称为 ai,ja_{i, j} 的余子式,Ai,j=(1)i+jMi,jA_{i, j} = (-1)^{i + j} M_{i, j} 称为 ai,ja_{i, j} 的代数余子式,同样可以得到行列式按列展开的公式。

M=A(i1i2irk1k2kr)M = A \begin {pmatrix} i_1 & i_2 & \cdots & i_r \\ k_1 & k_2 & \cdots & k_r \end {pmatrix}AA 中第 i1,i2,,iri_1, i_2, \cdots, i_r 行和第 k1,k2,,krk_1, k_2, \cdots, k_r 列交叉处的元组成的子式,则 A(ir+1inkr+1kn)A \begin {pmatrix} i_{r + 1} & \cdots & i_n \\ k_{r + 1} & \cdots & k_n \end {pmatrix} 是在 AA 中将 MM 所在的 rr 行和 rr 列全部删去剩下的元按原来的顺序排成的子式,称为 MM 的余子式,MM 的余子式与 (1)i1+i2++ir+k1+k2++kr(-1)^{i_1 + i_2 + \cdots + i_r + k_1 + k_2 + \cdots + k_r} 的乘积称为 MM 的代数余子式,由此我们得到:

定理 22(拉普拉斯展开定理):设 A|A|nn 阶行列式,对任意正整数 r<nr < n,任意取定 rr 个指标 i1<i2<<irni_1 < i_2 < \cdots < i_r \le n,则 A|A| 的值等于它的第 i1,i2,,iri_1, i_2, \cdots, i_r 行(或列)元组成的所有的 rr 阶子式分别于它们的代数余子式的乘积之和。

# 习题

  1. 计算 nn 阶行列式:

    (1) ab0000ab00000abb000a\begin {vmatrix} a & b & 0 & \cdots & 0 & 0 \\ 0 & a & b & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ b & 0 & 0 & \cdots & 0 & a \end {vmatrix}

    (2) x1a1a2an2an1a1x2a2an2an1a1a2x3an2an1a1a2a3an1xn\begin {vmatrix} x_1 & a_1 & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ a_1 & x_2 & a_2 & \cdots & a_{n - 2} & a_{n - 1} \\ a_1 & a_2 & x_3 & \cdots & a_{n - 2} & a_{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_{n - 1} & x_n \end {vmatrix}

    (3) α+βαβ0001α+βαβ0001α+β00000α+βαβ0001α+β\begin {vmatrix} \alpha + \beta & \alpha \beta & 0 & \cdots & 0 & 0 \\ 1 & \alpha + \beta & \alpha \beta & \cdots & 0 & 0 \\ 0 & 1 & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \beta \\ 0 & 0 & 0 & \cdots & 1 & \alpha + \beta \end {vmatrix}

    (4) ab000cab000ca00000ab000ca\begin {vmatrix} a & b & 0 & \cdots & 0 & 0 \\ c & a & b & \cdots &0 & 0 \\ 0 & c & a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ 0 & 0 & 0 & \cdots & c & a \end {vmatrix}

    (5) 对角元都为 00,主对角线上方元素都为 11,下方元素都为 1-1 的偶数阶行列式:

    011101110\begin {vmatrix} 0 & 1 & \cdots & 1 \\ -1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & 0 \end {vmatrix}

    (1) 解:

    ab0000ab00000abb000a=ba(1)+(2),,ba(n1)+(n)a00000a000000a0bb2ab3a2(1)nbn1an2(1)n+1bnan1=(1)n+1bn \begin {vmatrix} a & b & 0 & \cdots & 0 & 0 \\ 0 & a & b & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ b & 0 & 0 & \cdots & 0 & a \end {vmatrix} \xlongequal {- \frac b a (1) + (2), \cdots, - \frac b a (n - 1) + (n)} \begin {vmatrix} a & 0 & 0 & \cdots & 0 & 0 \\ 0 & a & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & 0 \\ b & - \frac {b^2} a & \frac {b^3} {a^2} & \cdots & (-1)^{n} \frac {b^{n - 1}} {a^{n - 2}} & (-1)^{n + 1} \frac {b^n} {a^{n - 1}} \end {vmatrix} = (-1)^{n + 1} b^n

    (2) 解:

    Δ=x1a1a1x20000x2a2a2x30000x3a300000xn1an1an1xna1a2a3an1xn=x1a10000x2a20000x3a30a1a2+x2a1x1a1a1a3+x3a2x2a2a2+(x3a2)(x2a1)(x2a2)(x1a1)a1xn+i=1n1(i=1n1xj+1ajxjajai)=[xn+i=1n1(i=1n1xj+1ajxjajai)]i=1n1(xiai) \Delta = \begin {vmatrix} x_1 - a_1 & a_1 - x_2 & 0 & \cdots & 0 & 0 \\ 0 & x_2 - a_2 & a_2 - x_3 & \cdots & 0 & 0 \\ 0 & 0 & x_3 - a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x_{n - 1} - a_{n - 1} & a_{n - 1} - x_n \\ a_1 & a_2 & a_3 & \cdots & a_{n - 1} & x_n \end {vmatrix} = \begin {vmatrix} x_1 - a_1 & 0 & 0 & \cdots & 0 \\ 0 & x_2 - a_2 & 0 & \cdots & 0 \\ 0 & 0 & x_3 - a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 + \frac {x_2 - a_1} {x_1 - a_1} a_1 & a_3 + \frac {x_3 - a_2} {x_2 - a_2} a_2 + \frac {(x_3 - a_2)(x_2 - a_1)} {(x_2 - a_2)(x_1 - a_1)} a_1 & \cdots & x_n + \sum\limits_{i = 1}^{n - 1} \left( \prod\limits_{i = 1}^{n - 1} \frac {x_{j + 1} - a_j} {x_j - a_j} a_i \right) \end {vmatrix} = \left[ x_n + \sum\limits_{i = 1}^{n - 1} \left( \prod\limits_{i = 1}^{n - 1} \frac {x_{j + 1} - a_j} {x_j - a_j} a_i \right) \right] \prod_{i = 1}^{n - 1} (x_i - a_i)

    (3) 解:

    Δ=α+β0001α2+αβ+β2α+β0001α3+α2β+αβ2+β3α2+αβ+β200000i=0nαiβnii=0n1αiβn1i=i=0nαiβni \Delta = \begin {vmatrix} \alpha + \beta & 0 & 0 & \cdots & 0 \\ 1 & \frac {\alpha^2 + \alpha \beta + \beta^2} {\alpha + \beta} & 0 & \cdots & 0 \\ 0 & 1 & \frac {\alpha^3 + \alpha^2 \beta + \alpha \beta^2 + \beta^3} {\alpha^2 + \alpha \beta + \beta^2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \frac {\sum\limits_{i = 0}^n \alpha^i \beta^{n - i}} {\sum\limits_{i = 0}^{n - 1} \alpha^i \beta^{n - 1 - i}} \end {vmatrix} = \sum\limits_{i = 0}^n \alpha^i \beta^{n - i}

    (4) 解:

    Δ=cnacbc0001acbc0001ac00000acbc0001ac \Delta = c^n \begin {vmatrix} \frac a c & \frac b c & 0 & \cdots & 0 & 0 \\ 1 & \frac a c & \frac b c & \cdots & 0 & 0 \\ 0 & 1 & \frac a c & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \frac a c & \frac b c \\ 0 & 0 & 0 & \cdots & 1 & \frac a c \end {vmatrix}

    ac=α+β,bc=αβ\dfrac a c = \alpha + \beta, \dfrac b c = \alpha \beta,可解得 α=a+a22bc2c,β=aa22bc2c\alpha = \dfrac {a + \sqrt {a^2 - 2bc}} {2c}, \beta = \dfrac {a - \sqrt {a^2 - 2bc}} {2c}
    c=0c = 0 时,显然 Δ=an\Delta = a^n
    c0c \not = 0 时,由 (3)(3) 可知:

    Δ=i=0n(a+a22bc)i(aa22bc)ni2n \Delta = \frac {\sum\limits_{i = 0}^n (a + \sqrt {a^2 - 2bc})^i (a - \sqrt {a^2 - 2bc})^{n - i}} {2^n}

    (5) 解:

    Δn=010100111+011101111=Δn1+100210111=Δn1+(1)n=Δn2 \Delta_n = \begin {vmatrix} 0 & 1 & \cdots & 0 \\ -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & 1 \end {vmatrix} + \begin {vmatrix} 0 & 1 & \cdots & 1 \\ -1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & -1 \end {vmatrix} = \Delta_{n - 1} + \begin {vmatrix} -1 & 0 & \cdots & 0 \\ -2 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & -1 \end {vmatrix} = \Delta_{n - 1} + (-1)^n = \Delta_{n - 2}

    由于是偶数阶行列式,且 0110=1\begin {vmatrix} 0 & 1 \\ -1 & 0 \end {vmatrix} = 1,因此该行列式值为 11

  2. 44 阶行列式 D4=3040222207005322D_4 = \begin {vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end {vmatrix} 中第四行各元素余子式之和。

    解:55 的余子式为:

    040222700=74022=56 \begin {vmatrix} 0 & 4 & 0 \\ 2 & 2 & 2 \\ -7 & 0 & 0 \end {vmatrix} = -7 \begin {vmatrix} 4 & 0 \\ 2 & 2 \end {vmatrix} = -56

    33 的余子式为:

    340222000=0 \begin {vmatrix} 3 & 4 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \end {vmatrix} = 0

    2-2 的余子式为:

    300222070=70322=42 \begin {vmatrix} 3 & 0 & 0 \\ 2 & 2 & 2 \\ 0 & -7 & 0 \end {vmatrix} = -7 \begin {vmatrix} 0 & 3 \\ 2 & 2 \end {vmatrix} = 42

    22 的余子式为:

    304222070=74322=14 \begin {vmatrix} 3 & 0 & 4 \\ 2 & 2 & 2 \\ 0 & -7 & 0 \end {vmatrix} = -7 \begin {vmatrix} 4 & 3 \\ 2 & 2 \end {vmatrix} = -14

    则余子式之和为 28-28

  3. 证明 nn 阶行列式:

    cosθ100012cosθ100012cosθ000002cosθ100012cosθ=cosnθ\begin {vmatrix} \cos \theta & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2 \cos \theta & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 \cos \theta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \cos \theta & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2 \cos \theta \end {vmatrix} = \cos n \theta

    证明:

    Δ=cosθ00001cos2θcosθ00001cos3θcos2θ00000cos(n1)θcos(n2)θ00001cosnθcos(n1)θ=cosnθ \Delta = \begin {vmatrix} \cos \theta & 0 & 0 & \cdots & 0 & 0 \\ 1 & \frac {\cos 2 \theta} {\cos \theta} & 0 & \cdots & 0 & 0 \\ 0 & 1 & \frac {\cos 3 \theta} {\cos 2 \theta} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \frac {\cos (n - 1) \theta} {\cos (n - 2) \theta} & 0 \\ 0 & 0 & 0 & \cdots & 1 & \frac {\cos n \theta} {\cos (n - 1) \theta} \end {vmatrix} = \cos n \theta

  4. D4=1111123x149x21827x3D_4 = \begin {vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & x \\ 1 & 4 & 9 & x^2 \\ 1 & 8 & 27 & x^3 \end {vmatrix} 展开式中的二次项 x2x^2 的系数。

    解:容易发现 D4D_4 实际上是个范德蒙德行列式,因此 D4=2(x1)(x2)(x3)D_4 = 2 (x - 1) (x - 2) (x - 3),因此二次项的系数为 12-12