# 导数的四则运算

定理 1: 如果函数 u(x),v(x)u(x), v(x) 在区间 II 可导,则它们的和、差、积、商也可导,并且

[u(x)±v(x)]=u(x)±v(x)[u(x)v(x)]=u(x)v(x)+u(x)v(x)[u(x)v(x)]=u(x)v(x)u(x)v(x)v2(x)(v(x)0)[u(x) \pm v(x)]' = u'(x) \pm v'(x) \\ [u(x) \cdot v(x)]' = u'(x)v(x) + u(x)v'(x) \\ \left[\frac {u(x)} {v(x)}\right]' = \frac {u'(x)v(x) - u(x)v'(x)} {v^2(x)} (v(x) \not = 0)

关于除法运算的证明:f(x)=u(x)v(x),(v(x)0)f(x) = \dfrac {u(x)} {v(x)}, (v(x) \not = 0),

f(x)=limh0f(x+h)f(x)h=limh0u(x+h)v(x+h)u(x)v(x)h=limh0u(x+h)v(x)u(x)v(x+h)v(x+h)v(x)h=limh0[u(x+h)u(x)]v(x)u(x)[v(x+h)v(x)]v(x+h)v(x)h=limh0u(x+h)u(x)hv(x)u(x)v(x+h)v(x)hv(x+h)v(x)=u(x)v(x)u(x)v(x)[v(x)]2\begin{aligned} f'(x) &= \lim_{h \to 0} \frac {f(x + h) - f(x)} {h} \\ &= \lim_{h \to 0} \frac {\frac {u(x + h)} {v(x + h)} - \frac {u(x)} {v(x)}} {h} \\ &= \lim_{h \to 0} \frac {u(x + h)v(x) - u(x)v(x + h)} {v(x + h)v(x)h} \\ &= \lim_{h \to 0} \frac {[u(x + h) - u(x)]v(x) - u(x)[v(x + h) - v(x)]} {v(x + h)v(x)h} \\ &= \lim_{h \to 0} \frac {\frac {u(x + h) - u(x)} {h} \cdot v(x) - u(x) \cdot \frac {v(x + h) - v(x)} {h}} {v(x + h)v(x)} \\ &= \frac {u'(x)v(x) - u(x)v'(x)} {[v(x)]^2} \end{aligned}

# 复合函数的求导法则

定理 2: 设函数 u=g(x)u = g(x) 在点 xx 处可导,而函数 f(u)f(u) 在点 u=g(x)u = g(x) 处可导,则复合函数 y=f[g(x)]y = f[g(x)] 在点 xx 可导,且

dydx=dydududx=f(u)g(x)\frac {\mathrm{d}y} {\mathrm{d}x} = \frac {\mathrm{d}y} {\mathrm{d}u} \cdot \frac {\mathrm{d}u} {\mathrm{d}x} = f'(u) \cdot g'(x)

链式法则: 因变量对自变量的导数,等于因变量对中间变量的导数,乘以中间变量对自变量的导数。

对数求导法: 常用于多个函数相乘的求导或幂指函数的求导。以幂指函数的求导为例:

f(x)=u(x)v(x)lnf(x)=v(x)lnu(x)(lnf(x))=(v(x)lnu(x))1f(x)f(x)=v(x)lnu(x)+v(x)1u(x)u(x)f(x)=u(x)v(x)[v(x)lnu(x)+v(x)u(x)u(x)]\begin{aligned} f(x) &= u(x)^{v(x)} \\ \ln f(x) &= v(x) \ln u(x) \\ (\ln f(x))' &= (v(x) \ln u(x))' \\ \frac 1 {f(x)} f'(x) &= v'(x) \ln u(x) + v(x) \cdot \frac 1 {u(x)} u'(x) \\ \Rightarrow f'(x) &= u(x)^{v(x)}\left[v'(x) \cdot \ln u(x) + \frac {v(x)u'(x)} {u(x)}\right] \end{aligned}

# 反函数的导数

定理 3: 如果函数 x=ϕ(y)x = \phi(y) 在某区间 IyI_y 内单调、可导且 ϕ(y)0\phi'(y) \not = 0,那么它的反函数 y=f(x)y = f(x) 在对应区间 IxI_x 内也可导,且有:

f(x)=1ϕ(y)f'(x) = \frac 1 {\phi'(y)}

反函数的导数等于原函数导数的倒数

# 习题

  1. 求下列函数的导函数:

    (1) f(x)=x2cosxlnxx+3f(x) = \dfrac {x^2 \cos x - \ln x} {\sqrt x + 3}

    (2) f(x)=x2+secxxcscxf(x) = \dfrac {x^2 + \sec x} {x - \csc x}

    (1) 解:

    f(x)=(2xcosxx2sinx1x)(x+3)(x2cosxlnx)(12x)(x+3)2 \begin{aligned} f'(x) &= \frac {(2x \cos x - x^2 \sin x - \frac 1 x)(\sqrt x + 3) - (x^2 \cos x - \ln x)(\frac 1 {2\sqrt x})} {(\sqrt x + 3)^2} \end{aligned}

    (2) 解:

    f(x)=(2x+secxtanx)(xcscx)(x2+secx)(1+cscxcotx)(xcscx)2 \begin{aligned} f'(x) &= \frac {(2x + \sec x \tan x)(x - \csc x) - (x^2 + \sec x)(1 + \csc x \cot x)} {(x - \csc x)^2} \end{aligned}

  2. 求下列函数的导数:

    (1) f(x)=eaxsinbxf(x) = e^{ax} \sin bx

    (2) f(x)=ln(cosx+sinx)f(x) = \ln (\cos x + \sin x)

    (3) f(x)=ln(x+a2+x2)f(x) = \ln (x + \sqrt {a^2 + x^2})

    (1) 解:

    f(x)=aeaxsinbx+beaxcosbx \begin{aligned} f'(x) &= ae^{ax} \sin bx + be^{ax} \cos bx \end{aligned}

    (2) 解:

    f(x)=1cosx+sinx(sinx+cosx)=cosxsinxcosx+sinx \begin{aligned} f'(x) &= \frac 1 {\cos x + \sin x} \cdot (-\sin x + \cos x) \\ &= \frac {\cos x - \sin x} {\cos x + \sin x} \end{aligned}

    (3) 解:

    f(x)=1x+a2+x2(1+12a2+x22x)=1+xa2+x2x+a2+x2=1a2+x2 \begin{aligned} f'(x) &= \frac 1 {x + \sqrt {a^2 + x^2}} \cdot (1 + \frac 1 {2 \sqrt {a^2 + x^2}} \cdot 2x) \\ &= \frac {1 + \dfrac x {\sqrt {a^2 + x^2}}} {x + \sqrt {a^2 + x^2}} \\ &= \frac 1 {\sqrt {a^2 + x^2}} \end{aligned}

  3. sinhx=exex2,coshx=ex+ex2\sinh x = \dfrac {e^x - e^{-x}} 2, \cosh x = \dfrac {e^x + e^{-x}} 2,分别成为双曲正弦和双曲余弦函数,证明:

    (1) cosh2xsinh2x=1\cosh^2 x - \sinh^2 x = 1

    (2) (sinhx)=coshx,(coshx)=sinhx(\sinh x)' = \cosh x, (\cosh x)' = \sinh x

    (1) 证明:

    cosh2xsinh2x=e2x+e2x+24e2x+e2x24=1 \begin{aligned} \cosh^2 x - \sinh^2 x &= \frac {e^{2x} + e^{-2x} + 2} 4 - \frac {e^{2x} + e^{-2x} - 2} 4 = 1 \end{aligned}

    (2) 证明:

    (sinhx)=(exex2)=ex+ex2=coshx \begin{aligned} (\sinh x)' &= \left(\frac {e^x - e^{-x}} 2\right)' \\ &= \frac {e^x + e^{-x}} 2 = \cosh x \end{aligned}

    (coshx)=(ex+ex2)=exex2=sinhx \begin{aligned} (\cosh x)' &= \left(\frac {e^x + e^{-x}} 2\right)' \\ &= \frac {e^x - e^{-x}} 2 = \sinh x \end{aligned}

  4. 求下列函数的导数:

    (1) f(x)=xx(x>0)f(x) = \sqrt [x] x (x > 0)

    (2) f(x)=(xx1)(xx2)(xxn)f(x) = (x - x_1)(x - x_2) \cdots (x - x_n)

    (1) 解:

    lnf(x)=lnxxf(x)f(x)=1lnxx2f(x)=xx(1lnx)x2 \begin{aligned} \ln f(x) &= \frac {\ln x} x \\ \frac {f'(x)} {f(x)} &= \frac {1 - \ln x} {x^2} \\ f'(x) &= \frac {\sqrt [x] x (1 - \ln x)} {x^2} \end{aligned}

    (2) 解:当 xx1x \not = x_1xx2x \not = x_2\cdotsxxnx \not = x_n 时,

    lnf(x)=ln(xx1)+ln(xx2)++ln(xxn)f(x)f(x)=1xx1+1xx2++1xxnf(x)=(xx1)(xx2)(xxn)(1xx1+1xx2++1xxn) \begin{aligned} \ln f(x) &= \ln (x - x_1) + \ln (x - x_2) + \cdots + \ln (x - x_n) \\ \frac {f'(x)} {f(x)} &= \frac 1 {x - x_1} + \frac 1 {x - x_2} + \cdots + \frac 1 {x - x_n} \\ f'(x) &= (x - x_1)(x - x_2) \cdots (x - x_n) \left (\frac 1 {x - x_1} + \frac 1 {x - x_2} + \cdots + \frac 1 {x - x_n} \right ) \end{aligned}

    x=x1x = x_1 时,

    f(x1)=limxx1f(x)f(x1)xx1=(xx2)(xx3)(xxn) f'(x_1) = \lim_{x \to x_1} \frac {f(x) - f(x_1)} {x - x_1} = (x - x_2)(x - x_3) \cdots (x - x_n)

    同理可得当 x=x2,x3,,xnx = x_2, x_3, \cdots, x_n 时的导数。
    忽略了 x=x1,x2,,xnx = x_1, x_2, \cdots, x_n 时不能取对数的特殊情况。

  5. μ\mu 满足什么条件下函数 f(x)={xμsin1x,x00,x=0f(x) = \begin{cases} |x|^\mu \sin \dfrac 1 x, & 当 \, x \not = 0 \, 时 \\ 0, & 当 \, x = 0 \, 时 \end{cases}

    (1) 在 x=0x = 0 处连续;

    (2) 在 x=0x = 0 处可导;

    (3) 在 x=0x = 0 处其导函数连续。

    (1) 解:
    \because sin1x\sin \dfrac 1 x 有界,且当 μ>0\mu > 0 时,limx0xμ=0\lim\limits_{x \to 0} |x|^\mu = 0
    \therefore 此时 limx0f(x)=0=f(0)\lim\limits_{x \to 0} f(x) = 0 = f(0),函数 f(x)f(x)x=0x = 0 处连续。

    (2) 解:要使 f(x)f(x)x=0x = 0 处可导,只需使 limx0f(x)f(0)x\lim\limits_{x \to 0} \dfrac {f(x) - f(0)} {x} 存在。

    limx0f(x)f(0)x=limx0xμsin1xx \lim_{x \to 0} \frac {f(x) - f(0)} {x} = \lim_{x \to 0} \frac {|x|^\mu \sin \frac 1 x} {x}

    当且仅当 μ>1\mu > 1 时,上式 =0= 0.

    (3) 解:当 x>0x > 0 时,f(x)=μxμ1sin1xxμ2cos1x=xμ2(μxsin1xcos1x)f'(x) = \mu x^{\mu - 1} \sin \dfrac 1 x - x^{\mu - 2} \cos \dfrac 1 x = x^{\mu - 2} (\mu x \sin \dfrac 1 x - \cos \dfrac 1 x).
    由 (2) 可得,f(0)=0f'(0) = 0
    当且仅当 μ>2\mu > 2 时,limx0f(x)=f(0)=0\lim\limits_{x \to 0} f'(x) = f'(0) = 0,函数 f(x)f'(x)x=0x = 0 处连续。
    复合函数求导求错了