# 高阶导数的定义

定义 11 如果函数 f(x)f(x) 的导数 f(x)f'(x) 仍可导,即

(f(x))=limΔx0f(x+Δx)f(x)Δx(f'(x))' = \lim_{\Delta x \to 0} \frac {f'(x + \Delta x) - f'(x)} {\Delta x}

则称 (f(x))(f'(x))' 为函数 f(x)f(x) 的二阶导数,记为 f(x)f''(x)

f(x)f(x)nn 阶导数记为:

f(n)(x),y(n),dnydxn,dnf(x)dxnf^{(n)}(x), y^{(n)}, \frac {\mathrm d^n y} {\mathrm d x^n}, \frac {\mathrm d^n f(x)} {\mathrm d x^n}

二阶和二阶以上的导数统称为高阶导数。

# 莱布尼茨公式

定理 11(莱布尼茨公式): 设函数 f(x)f(x)g(x)g(x) 具有 nn 阶导数,则

(fg)(n)=k=0nCnkf(nk)g(k)(f \cdot g)^{(n)} = \sum_{k = 0}^n C_n^k f^{(n - k)} g^{(k)}

证明(归纳法):nk=i,k=jn - k = i, k = j,公式变为:

(fg)(n)=i+j=n(i+j)!i!j!f(i)g(j)(f \cdot g)^{(n)} = \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i)} g^{(j)}

(1) 当 n=2n = 2 显然成立;

(2) 设 (fg)(n)=i+j=n(i+j)!i!j!f(i)g(j)(f \cdot g)^{(n)} = \sum_{i + j = n} \dfrac {(i + j)!} {i! j!} f^{(i)} g^{(j)} 成立;

(3)

(fg)(n+1)=(i+j=n(i+j)!i!j!f(i)g(j))=i+j=n(i+j)!i!j!(f(i)g(j))=i+j=n(i+j)!i!j!f(i+1)g(j)+i+j=n(i+j)!i!j!f(i)g(j+1)=i+j=n+1(n!(i1)!j!+n!i!(j1)!)f(i)g(j)=i+j=n+1(n+1)!i!j!f(i)g(j)\begin {aligned} (f \cdot g)^{(n + 1)} &= \left( \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i)} g^{(j)} \right)' \\ &= \sum_{i + j = n} \frac {(i + j)!} {i! j!} (f^{(i)} g^{(j)})' \\ &= \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i + 1)} g^{(j)} + \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i)} g^{(j + 1)} \\ &= \sum_{i + j = n + 1} \left( \frac {n!} {(i - 1)! j!} + \frac {n!} {i! (j - 1)!} \right) f^{(i)} g^{(j)} \\ &= \sum_{i + j = n + 1} \frac {(n + 1)!} {i! j!} f^{(i)} g^{(j)} \end {aligned}

# 高阶导数的计算

# 直接计算,求出前几阶后归纳法证明通式

11.y=ln(1+x)y = \ln (1 + x),求 y(n)y^{(n)}.

解:

y=11+xy=1(1+x)2y=2!(1+x)3y(4)=3!(1+x)4y(n)=(1)n1(n1)!(1+x)n(n1,0!=1)\begin {matrix} y' = \dfrac 1 {1 + x} & y'' = - \dfrac 1 {(1 + x)^2} \\ y''' = \dfrac {2!} {(1 + x)^3} & y^{(4)} = - \dfrac {3!} {(1 + x)^4} \\ \end {matrix} \\ \cdots \, \cdots \\ y^{(n)} = (-1)^{n - 1} \frac {(n - 1)!} {(1 + x)^n} \qquad (n \ge 1, 0! = 1)

# 使用莱布尼茨公式

22.y=x2e2xy = x^2 e^{2x},求 y(20)y^{(20)}

解:u=e2x,v=x2u = e^{2x}, v = x^2,则由莱布尼兹公式知:

y(20)=(e2x)(20)x2+20(e2x)(19)(x2)+20×192!(e2x)(18)(x2)+0=220e2xx2+20219e2x2x+20192!218e2x2=220e2x(x2+20x+95)\begin {aligned} y^{(20)} &= (e^{2x})^{(20)} \cdot x^2 + 20 (e^{2x})^{(19)} \cdot (x^2)' + \frac {20 \times 19} {2!} (e^{2x})^{(18)} \cdot (x^2)'' + 0 \\ &= 2^{20} e^{2x} \cdot x^2 + 20 \cdot 2^{19} e^{2x} \cdot 2x + \frac {20 \cdot 19} {2!} 2^{18} e^{2x} \cdot 2 \\ &= 2^{20} e^{2x} (x^2 + 20x + 95) \end {aligned}

33.y=arcsinxy = \arcsin x,求 y(n)(0)y^{(n)}(0)

解:y=11x2,y=x(1x2)32=xy1x2y' = \dfrac 1 {\sqrt {1 - x^2}}, y'' = \dfrac x {(1 - x^2)^{\frac 3 2}} = \dfrac {xy'} {1 - x^2} 得:

(1x2)yxy=0(1 - x^2)y'' - xy' = 0

由莱布尼茨公式求 n2n - 2 次导得:

(1x2)y(n)(2n3)xy(n1)(n2)2y(n2)=0(n3)(1 - x^2) y^{(n)} - (2n - 3) xy^{(n - 1)} - (n - 2)^2 y^{(n - 2)} = 0 (n \ge 3)

x=0x = 0y(n)(0)=(n2)2y(n2)(0)y^{(n)}(0) = (n - 2)^2 y^{(n - 2)}(0)

y(0)=1,y(0)=0y'(0) = 1, y''(0) = 0 得:

y(n)(0)={[(2k1)!!]2n=2k+1,0n=2k.y^{(n)}(0) = \begin {cases} [(2k - 1)!!]^2 & n = 2k + 1, \\ 0 & n = 2k. \end {cases}

# 间接法:利用已知的高阶导数

常用高阶导数公式:

  1. (ax)(n)=axlnna(a>0),(ex)(n)=ex(a^x)^{(n)} = a^x \ln^n a \quad (a > 0), (e^x)^{(n)} = e^x

  2. (sinkx)(n)=knsin(kx+nπ2)(\sin kx)^{(n)} = k^n \sin (kx + \dfrac {n \pi} 2)

  3. (coskx)(n)=kncos(kx+nπ2)(\cos kx)^{(n)} = k^n \cos (kx + \dfrac {n \pi} 2)

  4. (xα)(n)=α!(αn)!xαn(x^{\alpha})^{(n)} = \dfrac {\alpha!} {(\alpha - n)!} x^{\alpha - n}

  5. (lnx)(n)=(1)n1(n1)!xn(\ln x)^{(n)} = (-1)^{n - 1} \dfrac {(n - 1)!} {x^n}

  6. (1x)(n)=(1)nn!xn+1(\dfrac 1 x)^{(n)} = (-1)^n \dfrac {n!} {x^{n + 1}}

44.y=sin6x+cos6xy = \sin^6 x + \cos^6 x,求 y(n)y^{(n)}

解:

y=(sin2x)3+(cos2x)3=(sin2x+cos2x)(sin4xsin2xcos2x+cos4x)=(sin2x+cos2x)23sin2xcos2x=134sin22x=1341cos4x2=58+38cos4xy(n)=384ncos(4x+nπ2)\begin {aligned} y &= (\sin^2 x)^3 + (\cos^2 x)^3 \\ &= (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x) \\ &= (\sin^2 x + \cos^2 x)^2 - 3 \sin^2 x \cos^2 x \\ &= 1 - \frac 3 4 \sin^2 2x = 1 - \frac 3 4 \cdot \frac {1 - \cos 4x} 2 \\ &= \frac 5 8 + \frac 3 8 \cos 4x \end {aligned} \\ \therefore y^{(n)} = \dfrac 3 8 \cdot 4^{n} \cdot \cos (4x + \dfrac {n \pi} 2)

# 习题

  1. 求下列函数的 nn 阶导数:

    (1) y=sinaxsinbxy = \sin ax \sin bx

    (2) y=ex(sinx+cosx)y = e^x (\sin x + \cos x)

    (3) y=lna+bxabxy = \ln \dfrac {a + bx} {a - bx}

    (1) y=sinaxsinbx=12(cos[(ab)x]cos[(a+b)x])y = \sin ax \sin bx = \dfrac 1 2 (\cos [(a - b) x] - \cos [(a + b) x]),则:

    y(n)(x)=12(ab)n[cos(ab)x+nπ2]12(a+b)n[cos(a+b)x+nπ2] y^{(n)}(x) = \frac 1 2 (a - b)^n \left[ \cos (a - b) x + \frac {n \pi} 2 \right] - \frac 1 2 (a + b)^n \left[ \cos (a + b) x + \frac {n \pi} 2 \right]

    能不产生 nn 项求和符号就不出现(之前直接套用了莱布尼茨公式,然后成了 nn 项求和表示形式,不如这个简洁)

    (2) 解:化简原函数得:

    y=2exsin(x+π4)y(n)=(2)n+1exsin[x+(n+1)π4] y = \sqrt 2 e^x \sin \left( x + \frac \pi 4 \right) \\ y^{(n)} = (\sqrt 2)^{n + 1} e^x \sin \left[ x + \frac {(n + 1) \pi} 4 \right]

    原因同上

    (3) 解:

    y=ln(a+bx)ln(abx)y=ba+bx+babxy=b2(a+bx)2+b2(abx)2y(n)=(n1)![bn(abx)n+(1)n1bn(a+bx)n] y = \ln (a + bx) - \ln (a - bx) \\ y' = \frac b {a + bx} + \frac b {a - bx} \\ y'' = - \frac {b^2} {(a + bx)^2} + \frac {b^2} {(a - bx)^2} \\ \cdots \, \cdots\\ y^{(n)} = (n - 1)! \left[ \frac {b^n} {(a - bx)^n} + (-1)^{n - 1} \frac {b^n} {(a + bx)^n} \right]

  2. 求下列函数的 nn 阶导数:

    y=x2sin3xy = x^2 \sin 3x

    解:当 n2n \le 2 时,由莱布尼茨公式:

    y(n)=i=0nCni(ni)!i!3isin(3x+iπ2) y^{(n)} = \sum_{i = 0}^n C_n^i \frac {(n - i)!} {i!} 3^{i} \sin (3x + \frac {i \pi} 2)

    n>2n > 2 时,由莱布尼茨公式:

    y(n)=3nx2sin(3x+nπ2)+2n3n1xsin[3x+(n1)π2]+n(n2)3n2sin[3x+(n2)π2] y^{(n)} = 3^n x^2 \sin (3x + \frac {n \pi} 2) + 2n \cdot 3^{n - 1} x \sin \left[ 3x + \frac {(n - 1) \pi} 2 \right] + n (n - 2) \cdot 3^{n - 2} \sin \left[ 3x + \frac {(n - 2) \pi} 2 \right]

    套用莱布尼茨公式时忘了算组合数

  3. 对下列方程所确定的隐函数 y=y(x)y = y(x),求 d2ydx2\dfrac {\mathrm d^2 y} {\mathrm d x^2}

    tan(x+y)xy=0\tan (x + y) - xy = 0

    解:左右两边同时对 xx 求导:

    (1+dydx)sec2(x+y)yxdydx=0(1) \left( 1 + \frac {\mathrm d y} {\mathrm d x} \right) \sec^2 (x + y) - y - x \frac {\mathrm d y} {\mathrm d x} = 0 \tag {1}

    整理得:

    dydx=ysec2(x+y)sec2(x+y)x \frac {\mathrm d y} {\mathrm d x} = \frac {y - \sec^2 (x + y)} {\sec^2 (x + y) - x}

    (1)(1) 式两边继续对 xx 求导得:

    d2ydx2sec2(x+y)+(1+dydx)22sec2(x+y)tan(x+y)2dydxxd2ydx=0 \frac {\mathrm d^2 y} {\mathrm d x^2} \sec^2 (x + y) + \left( 1 + \frac {\mathrm d y} {\mathrm d x} \right)^2 \cdot 2 \sec^2 (x + y) \tan (x + y) - 2 \frac {\mathrm d y} {\mathrm d x} - x \frac {\mathrm d^2 y} {\mathrm d x} = 0

    整理得:

    d2ydx2=[24sec2(x+y)tan(x+y)]ysec2(x+y)sec2(x+y)x2sec2(x+y)tan(x+y)sec2(x+y)+2sec2(x+y)tan(x+y)x \frac {\mathrm d^2 y} {\mathrm d x^2} = \frac {[2 - 4 \sec^2 (x + y) \tan (x + y)] \dfrac {y - \sec^2 (x + y)} {\sec^2 (x + y) - x} - 2 \sec^2 (x + y) \tan (x + y)} {\sec^2 (x + y) + 2 \sec^2 (x + y) \tan (x + y) - x}

  4. 对下列参数方程确定的函数 y=y(x)y = y(x),求 d2ydx2\dfrac {\mathrm d^2 y} {\mathrm d x^2}

    {x=atcosty=atsint\begin {cases} x = at \cos t \\ y = at \sin t \end {cases}

    解:

    dxdt=a(costtsint)dydt=a(sint+tcost)dydx=dydtdxdt=sint+tcostcosttsintd2ydx2=ddydxdtdxdt=(2sint+tcost)(sint+tcost)+(costtsint)(2costtsint)(costtsint)2a(costtsint)=t2+2a(costtsint)3 \frac {\mathrm d x} {\mathrm d t} = a (\cos t - t \sin t) \\ \frac {\mathrm d y} {\mathrm d t} = a (\sin t + t \cos t) \\ \frac {\mathrm d y} {\mathrm d x} = \frac {\dfrac {\mathrm d y} {\mathrm d t}} {\dfrac {\mathrm d x} {\mathrm d t}} = \frac {\sin t + t \cos t} {\cos t - t \sin t} \\ \frac {\mathrm d^2 y} {\mathrm d x^2} = \frac {\dfrac {\mathrm d \dfrac {\mathrm d y} {\mathrm d x}} {\mathrm d t}} {\dfrac {\mathrm d x} {\mathrm d t}} = \frac {\dfrac {(2 \sin t + t \cos t)(\sin t + t \cos t) + (\cos t - t \sin t)(2 \cos t - t \sin t)} {(\cos t - t \sin t)^2}} {a (\cos t - t \sin t)} = \frac {t^2 + 2} {a (\cos t - t \sin t)^3}

    一阶导的分子分母搞反了

  5. y=(arcsinx)2y = (\arcsin x)^2

    (1) 证明:(1x2)yxy=2(1 - x^2) y'' - xy' = 2;(2) 求 y(n)(0)y^{(n)}(0)

    (1) 证明:

    y=2arcsinx1x2y=2(1arcsinx2x21x2)1x2=2(1x2+xarcsinx)(1x2)32(1x2)yxy=2+2xarcsinx1x22xarcsinx1x2=2 y' = \frac {2 \arcsin x} {\sqrt {1 - x^2}} \\ y'' = \frac {2 \left( 1 - \arcsin x \dfrac {-2x} {2 \sqrt {1 - x^2}} \right)} {1 - x^2} = \frac {2(\sqrt {1 - x^2} + x \arcsin x)} {(1 - x^2)^{\frac 3 2}} \\ (1 - x^2) y'' - xy' = 2 + \frac {2x \arcsin x} {\sqrt {1 - x^2}} - \frac {2x \arcsin x} {\sqrt {1 - x^2}} = 2

    (2) 解:由莱布尼茨公式,对 (1)(1) 中结论求 n2n - 2 阶导:

    (1x2)y(n)(2n3)xy(n1)(n2)2y(n2)=0 (1 - x^2) y^{(n)} - (2n - 3) xy^{(n - 1)} - (n - 2)^2 y^{(n - 2)} = 0

    x=0x = 0,可得:

    y(n)(0)=(n2)2y(n2)(0) y^{(n)}(0) = (n - 2)^2 y^{(n - 2)}(0)

    又已知 y(0)=0,y(0)=2y'(0) = 0, y''(0) = 2,可知:

    y(n)(0)={0n=2k12k(k1)!n=2k y^{(n)}(0) = \begin {cases} 0 & n = 2k - 1 \\ 2^k (k - 1)! & n = 2k \end {cases}

  6. 设函数

    f(x)={x2nsin1x,x00,x=0f(x) = \begin {cases} x^{2n} \sin \dfrac 1 x, & x \not = 0 \\ 0, & x = 0 \end {cases}

    f(n)(0)f^{(n)}(0)

    解:令 g(x)=sin1xg(x) = \sin \dfrac 1 x,则:

    g(x)=x2sin(1x+π2)g(x)=2x3sin(1x+π2)x4sin(1x+π)g(x)=6x4sin(1x+π2)+6x5sin(1x+π)x6sin(1x+3π2) g'(x) = x^{-2} \sin \left( \frac 1 x + \frac \pi 2 \right) \\ g''(x) = -2x^{-3} \sin \left( \frac 1 x + \frac \pi 2 \right) - x^{-4} \sin \left( \frac 1 x + \pi \right) \\ g'''(x) = 6x^{-4} \sin \left( \frac 1 x + \frac \pi 2 \right) + 6x^{-5} \sin \left( \frac 1 x + \pi \right) - x^{-6} \sin \left( \frac 1 x + \frac {3 \pi} 2 \right)

    由归纳法知:

    g(n)(x)=i=1n1anxn+isin(1x+iπ2)+(x2)isin(1x+iπ2) g^{(n)}(x) = \sum_{i = 1}^{n - 1} a_n x^{n + i} \sin \left( \frac 1 x + \frac {i \pi} 2 \right) + (-x^{-2})^i \sin \left( \frac 1 x + \frac {i \pi} 2 \right)

    由莱布尼茨公式可得:

    f(m)(x)=i=0m(2n)!(2nm+i)!x2nm+i[k=1i1akx(k+i)sin(1x+kπ2)+(x2)isin(1x+iπ2)]=(1)mx2n2msin(1x+mπ2)+O(x2n2m+1),x0 \begin {aligned} f^{(m)}(x) &= \sum_{i = 0}^m \frac {(2n)!} {(2n - m + i)!} x^{2n - m + i} \left[ \sum_{k = 1}^{i - 1} a_k x^{-(k + i)} \sin \left( \frac 1 x + \frac {k \pi} 2 \right) + (-x^{-2})^i \sin \left( \frac 1 x + \frac {i \pi} 2 \right) \right] \\ &= (-1)^m x^{2n - 2m} \sin \left( \frac 1 x + \frac {m \pi} 2 \right) + O \left( |x|^{2n - 2m + 1} \right), x \to 0 \end {aligned}

    由上式计算可得:

    f(0)=limx0f(x)x=0f(0)=limx0f(x)x=0 f'(0) = \lim_{x \to 0} \frac {f(x)} x = 0 \\ f''(0) = \lim_{x \to 0} \frac {f'(x)} x = 0 \\ \cdots \, \cdots

    由数学归纳法可知,f(x)==f(n)(x)=0f'(x) = \cdots = f^{(n)}(x) = 0