# 费马引理

定义 11(极大极小值):x0Ix_0 \in I,如果存在 U(x0,δ)IU(x_0, \delta) \sub I,若对 xU(x0,δ)\forall x \in U(x_0, \delta),总有 f(x0)f(x)f(x_0) \ge f(x),称 f(x0)f(x_0)ffII 上的 极大值x0x_0 成为极大值点;若对 xU(x0,δ)\forall x \in U(x_0, \delta),总有 f(x0)f(x)f(x_0) \le f(x),称 f(x0)f(x_0)ffII 上的 极小值x0x_0 成为极小值点。

注:

  1. 极值为局部性质,最值为整体性质;

  2. 极大值未必比极小值大;

  3. 函数的极值点可以有无穷多个。

    例如 f(x)=sin1xf(x) = \sin \dfrac 1 x 在 &(0, 1)& 内有无穷多个极值点。

定理 11 ffx0x_0 处可导,且 x0x_0 是极值点,则 f(x0)=0f'(x_0) = 0

证明: 不妨设 x0x_0 为极大值点

由定义知,δ>0\exist \, \delta > 0,当 xU(x0,δ)x \in U(x_0, \delta) 时,有 f(x0)f(x)f(x_0) \ge f(x)

x(x0δ,x0)x \in (x_0 - \delta, x_0) 时,limxx0f(x)f(x0)xx00\lim\limits_{x \to x_0^-} \dfrac {f(x) - f(x_0)} {x - x_0} \ge 0,即 f(x0)0f'_-(x_0) \ge 0

x(x0,x0+δ)x \in (x_0, x_0 + \delta) 时,limxx0+f(x)f(x0)xx00\lim\limits_{x \to x_0^+} \dfrac {f(x) - f(x_0)} {x - x_0} \le 0,即 f+(x0)0f'_+(x_0) \le 0

因此 f(x0)=f(x0)=f+(x0)=0f'(x_0) = f'_-(x_0) = f'_+(x_0) = 0

定义 22(驻点):x0x_0 满足 f(x0)=0f'(x_0) = 0,称 x0x_0f(x)f(x) 的驻点。

注:

  1. 函数在极值点可导,则此极值点一定是驻点;

  2. 驻点未必是极值点;

  3. 不可导的点也可能是极值点。

# 罗尔(Rolle\text {Rolle})中值定理

定理 22fC[a,b]f \in C[a, b]ff(a,b)(a, b) 内可导,且 f(a)=f(b)f(a) = f(b),则 ξ(a,b)\exist \xi \in (a, b),使 f(ξ)=0f'(\xi) = 0

证明: fC[a,b]f \in C[a, b],必有最值 m,Mm, M

M=mM = m,则 f(x)c,ξ(a,b),f(ξ)=0f(x) \equiv c, \forall \, \xi \in (a, b), f'(\xi) = 0

M>mM > m,由 f(a)=f(b)f(a) = f(b)ff 在内部必取得 MMmm,因此存在 ξ(a,b)\xi \in (a, b),使 f(ξ)=0f'(\xi) = 0

注意:若罗尔定理的三个条件中有一个不满足,其结论可能不成立

11.ff[0,1][0, 1] 连续,(0,1)(0, 1) 内可导,且 f(1)=0f(1) = 0。求证 c(0,1)\exist c \in (0, 1),使 f(c)=f(c)cf'(c) = \dfrac {-f(c)} c

证明:(构造辅助函数)F(x)=xf(x)F(x) = xf(x)

由于 F(0)=F(1)=0,FC[0,1]F(0) = F(1) = 0, F \in C[0, 1], 在 (0,1)(0, 1) 可导,因此 c(0,1)\exist c \in (0, 1),使 F(c)=0F'(c) = 0,即 f(c)=f(c)cf'(c) = - \dfrac {f(c)} c

2.2.ff 可导,则 f(x)f(x) 的任意两个相邻零点间至少存在 ff' 的一个零点。

证明:x1,x2x_1, x_2 为零点,由 fC[x1,x2]f \in C[x_1, x_2],且 (x1,x2)(x_1, x_2) 可导,由罗尔定理,知 ξ(x1,x2)\exist \xi \in (x_1, x_2) 使 f(ξ)=0f'(\xi) = 0

推广:ffnn 个零点,且 nn 阶可导:

  • ff' 至少有 n1n - 1 个零点;

  • ff'' 至少有 n2n - 2 个零点;

  • \cdots \, \cdots

  • f(k)f^{(k)} 至少有 nkn - k 个零点。

33.f(x)f(x)[a,b][a, b] 可导,在 (a,b)(a, b) 二次可导,且 f(a)=f(b)=0,f+(a)f(b)>0f(a) = f(b) = 0, f'_+(a)f'_-(b) > 0,证明:

  1. ξ(a,b),f(ξ)=0\exist \, \xi \in (a, b), f(\xi) = 0

  2. η(a,b),f(η)=f(η)\exist \, \eta \in (a, b), f''(\eta) = f(\eta)

证明: 由于 f(a)=f(b)=0,f+(a)f(b)>0f(a) = f(b) = 0, f'_+(a) f'_-(b) > 0,不妨设 f+(a)>0,f(b)>0f'_+(a) > 0, f'_-(b) > 0

f+(a)=limxa+f(x)f(a)xa>0,f(b)=limxbf(x)f(b)xb>0,f'_+(a) = \lim_{x \to a^+} \frac {f(x) - f(a)} {x - a} > 0, f'_-(b) = \lim_{x \to b^-} \frac {f(x) - f(b)} {x - b} > 0,

由极限的保号性得知:

(a,a+δ),f(x)>f(a)=0,(b,bδ),f(x)<f(b)=0\exist \, (a, a + \delta), f(x) > f(a) = 0, \\ \exist \, (b, b - \delta), f(x) < f(b) = 0

由介值定理得到:

ξ(a,b),f(ξ)=0\exist \, \xi \in (a, b), f(\xi) = 0

(2) η(a,b),f(η)=f(η)\exist \, \eta \in (a, b), f''(\eta) = f(\eta)

f(x)f(x)=0\Leftarrow f''(x) - f(x) = 0 有零点

ex(f(x)f(x))\Leftarrow e^x (f'(x) - f(x)) 有两个零点

exf(x)\Leftarrow e^{-x} f(x) 有三个零点

由于 F(x)=exf(x),F(a)=F(b)=F(ξ)=0F(x) = e^x f(x), F(a) = F(b) = F(\xi) = 0,因此得证。

附常见形式的导函数的原函数:

  1. eax[f(x)+αf(x)]=[eαxf(x)]e^{ax} [f'(x) + \alpha f(x)] = [e^{\alpha x} f(x)]'

  2. e12x2[f(x)+xf(x)]=[e12x2f(x)]e^{\frac 1 2 x^2} [f'(x) + x f(x)] = [e^{\frac 1 2 x^2} f(x)]'

  3. 1x[f(x)1xf(x)]=[f(x)x]\dfrac 1 x [f'(x) - \dfrac 1 x f(x)] = \left[ \dfrac {f(x)} x \right]'

4.4.(广义罗尔定理):f(x)f(x)[a,+)[a, +\infty) 上连续,(a,+)(a, +\infty) 上可导,若 limx+f(x)=f(a)\lim\limits_{x \to + \infty} f(x) = f(a),则 ξ(a,+),f(ξ)=0\exist \, \xi \in (a, + \infty), f'(\xi) = 0

证明: (1) 若 f(x)f(a)f(x) \equiv f(a),则结论显然成立。

(2) 若 x0(a,+),f(x0)f(a)\exist \, x_0 \in (a, +\infty), f(x_0) \not = f(a),不妨设 f(x0)>f(a)f(x_0) > f(a)

μ=12(f(a)+f(x0)),f(a)<μ<f(x0)\mu = \dfrac 1 2 (f(a) + f(x_0)), f(a) < \mu < f(x_0)

故由介值定理得:ξ1(a,x0),f(ξ1)=μ\exist \, \xi_1 \in (a, x_0), f(\xi_1) = \mu

由于 limx+f(x)=f(a)<μ\lim\limits_{x \to +\infty} f(x) = f(a) < \mu,由极限保序性:x1>x0,f(x1)<μ\exist \, x_1 > x_0, f(x_1) < \mu

从而 f(x1)<μ<f(x0)f(x_1) < \mu < f(x_0)

故由介值定理,ξ2(x0,x1)\exist \, \xi_2 \in (x_0, x_1),使得 f(ξ2)=μf(\xi_2) = \mu

由罗尔定理,ξ(ξ1,ξ2)(a,+)\exist \, \xi \in (\xi_1, \xi_2) \sub (a, + \infty),使得 f(ξ)=0f'(\xi) = 0

# 拉格朗日(Lagrange\text {Lagrange})中值定理

定理 33(拉格朗日中值定理):fC[a,b]f \in C[a, b],在 (a,b)(a, b) 内可导,则 ξ(a,b)\exist \, \xi \in (a, b),使 f(b)f(a)ba=f(ξ)\dfrac {f(b) - f(a)} {b - a} = f'(\xi),或 f(b)f(a)=f(ξ)(ba)f(b) - f(a) = f'(\xi) (b - a)

证明 11F(x)=f(x)f(a)f(b)f(a)ba(xa)F(x) = f(x) - f(a) - \dfrac {f(b) - f(a)} {b - a} (x - a)

此时 F(a)=F(b)=0,FC[a,b]F(a) = F(b) = 0, F \in C[a, b],且在 (a,b)(a, b) 内可导。

因此 ξ(a,b)\exist \, \xi \in (a, b),使 F(ξ)=0F'(\xi) = 0,即 f(ξ)=f(b)f(a)baf'(\xi) = \dfrac {f(b) - f(a)} {b - a}

证明 22F(x)=f(x)(ba)[f(b)f(a)]xF(x) = f(x) (b - a) - [f(b) - f(a)] x,则:

F(a)=F(b)=bf(a)af(b)F(a) = F(b) = b f(a) - a f(b)

因此 ξ(a,b)\exist \, \xi \in (a, b),使 F(ξ)=0F'(\xi) = 0,即 f(ξ)=f(b)f(a)baf'(\xi) = \dfrac {f(b) - f(a)} {b - a}

定理 44 fC[a,b]f \in C[a, b](a,b)(a, b) 内可导,则 ff[a,b][a, b]cf(x)=0,x(a,b)\equiv c \Leftrightarrow f'(x) = 0, x \in (a, b)

证明: \Rightarrow:若 f(x)c,x[a,b]f(x) \equiv c, x \in [a, b],则 f(x)=0,x(a,b)f'(x) = 0, x \in (a, b)

\Leftarrow:若 f(x)=0,x(a,b)f'(x) = 0, \forall \, x \in (a, b),则对 x1<x2,x1,x2[a,b]\forall \, x_1 < x_2, x_1, x_2 \in [a, b],使 f(x2)f(x1)=f(ξ)(x2x1)=0f(x_2) - f(x_1) = f'(\xi) (x_2 - x_1) = 0,则 f(x2)=f(x1)f(x_2) = f(x_1)。由 x1,x2x_1, x_2 任意性,f(x)cf(x) \equiv c

推论: fgcfg=0f - g \equiv c \Leftrightarrow f' - g' = 0

5.5.(证明等式) 证明当 x<1x < 1 时,成立恒等式:

arctan1+x1x=arctanx+π4\arctan \frac {1 + x} {1 - x} = \arctan x + \frac \pi 4

证明:f(x)=arctan1+x1x,g(x)=arctanxf(x) = \arctan \dfrac {1 + x} {1 - x}, g(x) = \arctan x,则:

f(0)=arctan1=π4,g(0)=arctan0=0,f(0) = \arctan 1 = \frac \pi 4, g(0) = \arctan 0 = 0,

且:

f(x)=11+(1+x1x)2(1+x1x)=11+x2=g(x),f'(x) = \frac 1 {1 + \left( \dfrac {1 + x} {1 - x} \right)^2} \left( \frac {1 + x} {1 - x} \right)' = \frac 1 {1 + x^2} = g'(x),

所以当 x<1x < 1 时,f(x)g(x)f(0)g(0)=π4f(x) - g(x) \equiv f(0) - g(0) = \dfrac \pi 4,即:

arctan1+x1x=arctanx+π4\arctan \frac {1 + x} {1 - x} = \arctan x + \frac \pi 4

77.(证明不等式) 求证 x>0x > 0 时,x1+x<ln(1+x)<x\dfrac x {1 + x} < \ln (1 + x) < x

证明: 变形为:

11+x<ln(1+x)x<1\frac 1 {1 + x} < \frac {\ln (1 + x)} x < 1

考虑 f(t)=ln(1+t)C[0,x]f(t) = \ln (1 + t) \in C[0, x],在 (0,x)(0, x) 内可导,因此:

f(x)f(0)x0=f(ξ)=11+ξ,ξ(0,x).\frac {f(x) - f(0)} {x - 0} = f'(\xi) = \frac 1 {1 + \xi}, \xi \in (0, x).

11+ξ<1,11+ξ>11+x\dfrac 1 {1 + \xi} < 1, \dfrac 1 {1 + \xi} > \dfrac 1 {1 + x},因此:

11+x<ln(1+x)x<1\frac 1 {1 + x} < \frac {\ln (1 + x)} x < 1

# 拉格朗日定理的应用

8.8. 求下列极限:

  1. limx0ex1x\lim\limits_{x \to 0} \dfrac {e^x - 1} x

  2. limn(n21)(arctan1n1arctan1n+1)\lim\limits_{n \to \infty} (n^2 - 1) (\arctan \dfrac 1 {n - 1} - \arctan \dfrac 1 {n + 1})

解: (1)

ex1x=exe0x=eξ,ξ(0,x)limx0ex1x=limx0eξ=e0=1\frac {e^x - 1} x = \frac {e^x - e^0} x = e^\xi, \xi \in (0, x) \\ \lim_{x \to 0} \frac {e^x - 1} x = \lim_{x \to 0} e^\xi = e^0 = 1

(2)

arctan1n1arctan1n+1=11+ξ2(1n11n+1),ξ(1n+1,1n1)limn(n21)(arctan1n1arctan1n+1)=limn(n21)11+ξ2(1n11n+1)=2limn11+ξ2=2\arctan \frac 1 {n - 1} - \arctan \frac 1 {n + 1} = \frac 1 {1 + \xi^2} (\frac 1 {n - 1} - \frac 1 {n + 1}), \xi \in (\frac 1 {n + 1}, \frac 1 {n - 1}) \\ \lim_{n \to \infty} (n^2 - 1) (\arctan \frac 1 {n - 1} - \arctan \frac 1 {n + 1}) = \lim_{n \to \infty} (n^2 - 1) \cdot \frac 1 {1 + \xi^2} (\frac 1 {n - 1} - \frac 1 {n + 1}) = 2 \lim_{n \to \infty} \frac 1 {1 + \xi^2} = 2

9.9. 求证:arctanx\arctan x(,+)(- \infty, + \infty) 一致连续。

证明: x1,x2,x1<x2\forall \, x_1, x_2, x_1 < x_2,在 [x1,x2][x_1, x_2] 上:

arctanx2arctanx1=11+ξ2(x2x1)ξ(x1,x2)\arctan x_2 - \arctan x_1 = \frac 1 {1 + \xi^2} (x_2 - x_1) \quad \xi \in (x_1, x_2)

由于 0<11+ξ2<10 < \dfrac 1 {1 + \xi^2} < 1,则:

arctanx2arctanx1x2x1|\arctan x_2 - \arctan x_1| \le |x_2 - x_1|

因此对 ϵ>0,δ=ϵ\forall \, \epsilon > 0, \exist \, \delta = \epsilon,当 x2x1<δ|x_2 - x_1| < \delta 时,arctanx2arctanx1<ϵ|\arctan x_2 - \arctan x_1| < \epsilon

重要结论:x(a,b)\forall \, x \in (a, b),有 f(x)M|f'(x)| \le M,则 ff(a,b)(a, b) 上一致连续。

反之不真, 例如:f(x)=xf(x) = \sqrt x(0,1)(0, 1) 上一致连续,但是 f(x)=12xf'(x) = \dfrac 1 {2 \sqrt x} 无界。

# 柯西中值定理

定理 55(柯西中值定理): f,gC[a,b]f, g \in C[a, b],在 (a,b)(a, b) 内可导且 g(x)0g'(x) \not = 0,则 ξ(a,b)\exist \, \xi \in (a, b),使 f(b)f(a)g(b)g(a)=f(ξ)g(ξ)\dfrac {f(b) - f(a)} {g(b) - g(a)} = \dfrac {f'(\xi)} {g'(\xi)}

证明: 首先,由 g(x)g'(x) \not 0g(b)g(a)g(b) \not = g(a)(反证可知),令 F(x)=[f(b)f(a)]g(x)[g(b)g(a)]f(x)F(x) = [f(b) - f(a)] g(x) - [g(b) - g(a)] f(x) 满足罗尔定理。

因此 ξ(a,b)\exist \, \xi \in (a, b),使 F(ξ)=0F'(\xi) = 0,即 f(b)f(a)g(b)g(a)=f(ξ)g(ξ)\dfrac {f(b) - f(a)} {g(b) - g(a)} = \dfrac {f'(\xi)} {g'(\xi)}

9.9. 设函数 f(x)f(x)[0,1][0, 1] 上连续,在 (0,1)(0, 1) 内可导,证明:至少存在一点 ξ(0,1)\xi \in (0, 1),使 f(ξ)=2ξ[f(1)f(0)]f'(\xi) = 2 \xi [f(1) - f(0)]

证明 11 结论可变形为:

f(1)f(0)10=f(ξ)2ξ=f(x)(x2)x=ξ.\frac {f(1) - f(0)} {1 - 0} = \frac {f'(\xi)} {2 \xi} = \left. \frac {f'(x)} {(x^2)'} \right|_{x = \xi}.

因此在 (0,1)(0, 1) 内至少存在一点 ξ\xi,有:

f(1)f(0)10=f(ξ)2ξ,\frac {f(1) - f(0)} {1 - 0} = \frac {f'(\xi)} {2 \xi},

f(ξ)=2ξ[f(1)f(0)]f'(\xi) = 2 \xi [f(1) - f(0)]

证明 22F(x)=f(x)x2[f(1)f(0)]F(x) = f(x) - x^2 [f(1) - f(0)],利用罗尔定理。

# 习题

  1. 证明:方程 (n+1)anxn+nan1xn1++3a2x2+2a1x=an+an1++a1(n + 1) a_n x^n + n a_{n - 1} x^{n - 1} + \cdots + 3a_2 x^2 + 2a_1x = a_n + a_{n - 1} + \cdots + a_1 在区间 (0,1)(0, 1) 上至少有一个根。

    证明:令 f(x)=anxn+1++a1x2(an++a1)xf(x) = a_n x^{n + 1} + \cdots + a_1 x^2 - (a_n + \cdots + a_1) x,则 f(0)=f(1)=0,f(x)C[0,1]f(0) = f(1) = 0, f(x) \in C[0, 1]f(x)f(x)(0,1)(0, 1) 内可导,且 f(x)=0f'(x) = 0 \Leftrightarrow 原方程成立。
    f(x)f(x) 符合罗尔定理,ξ(0,1)\exist \, \xi \in (0, 1) 满足 f(ξ)=0f'(\xi) = 0,即方程至少存在一根 x=ξx = \xi

  2. 设函数 f(x)f(x) 在区间 [a,b][a, b] 上连续,在区间 (a,b)(a, b) 上可导,且存在 c(a,b)c \in (a, b),使得 f(a)+f(c)=2f(b)f(a) + f(c) = 2f(b),证明:存在 θ(a,b)\theta \in (a, b),使得 f(θ)=0f'(\theta) = 0

    证明:若 f(a)=f(b)=f(c)f(a) = f(b) = f(c),由罗尔定理,显然 θ(a,b),f(θ)=0\exist \, \theta \in (a, b), f'(\theta) = 0
    否则有 f(a)<f(b)<f(c)f(a) < f(b) < f(c),由介值定理,ξ(a,c),f(ξ)=f(b)\exist \, \xi \in (a, c), f(\xi) = f(b)
    则由罗尔定理,θ(ξ,b)(a,b),f(θ)=0\exist \, \theta \in (\xi, b) \sub (a, b), f'(\theta) = 0

  3. 设函数 f(x)f(x) 在区间 [0,1][0, 1] 上连续,在区间 (0,1)(0, 1) 内可导,f(0)=0,f(x)0,x(0,1)f(0) = 0, f(x) \not = 0, \forall \, x \in (0, 1),证明:任取 a>0a > 0,都存在 θ(0,1)\theta \in (0, 1),使得 f(1θ)f(1θ)=af(θ)f(θ)\dfrac {f'(1 - \theta)} {f(1 - \theta)} = a \dfrac {f'(\theta)} {f(\theta)}

    证明:令 F(x)=fa(x)f(1x)F(x) = f^a(x)f(1 - x),显然 F(0)=F(1)=0F(0) = F(1) = 0,则由罗尔定理,θ(0,1),F(θ)=0\exist \, \theta \in (0, 1), F'(\theta) = 0。又有:

    F(x)=afa1(x)f(x)f(1x)fa(x)f(1x)=fa1(x)[af(x)f(1x)f(x)f(1x)] F'(x) = af^{a - 1}(x)f'(x)f(1 - x) - f^a(x)f'(1 - x) = f^{a - 1}(x)[af'(x)f(1 - x) - f(x)f'(1 - x)]

    F(θ)=0f(1θ)f(1θ)=af(θ)f(θ)F'(\theta) = 0 \Rightarrow \dfrac {f'(1 - \theta)} {f(1 - \theta)} = a \dfrac {f'(\theta)} {f(\theta)}
    没构造出原函数

  4. 设函数 f(x)f(x) 在区间 [0,1][0, 1] 上有 nn 阶导函数,且 f(0)=f(1)=0f(0) = f(1) = 0,设 F(x)=xn1f(x)F(x) = x^{n - 1}f(x),求证:存在 ξ(0,1)\xi \in (0, 1),使得 F(n)(ξ)=0F^{(n)}(\xi) = 0

    证明:显然 F(0)=0F(0) = 0。不妨设 F(m)(0)=0,mn3F^{(m)}(0) = 0, m \le n - 3,下证 F(m+1)(0)=0F^{(m + 1)}(0) = 0

    F(m+1)(0)=i=0m+1Cm+1i(n1)!(nm2+i)!xnm2+if(i)(x) F^{(m + 1)}(0) = \sum_{i = 0}^{m + 1} C_{m + 1}^i \frac {(n - 1)!} {(n - m - 2 + i)!} x^{n - m - 2 + i} f^{(i)}(x)

    注意到 nm2+i>0n - m - 2 + i > 0,因此 F(m+1)(0)=0F^{(m + 1)}(0) = 0。当 m=n2m = n - 2 时:

    F(m+1)(0)=i=0mCm+1i(n1)!(nm2+i)!xnm2+if(i)(x)+(n1)!f(x) F^{(m + 1)}(0) = \sum_{i = 0}^{m} C_{m + 1}^i \frac {(n - 1)!} {(n - m - 2 + i)!} x^{n - m - 2 + i} f^{(i)}(x) + (n - 1)! f(x)

    显然也有 F(m+1)(0)=0F^{(m + 1)}(0) = 0。因此对 mn1,F(m)(0)=0\forall \, m \le n - 1, F^{(m)}(0) = 0
    显然有 F(0)=F(1)=0F(0) = F(1) = 0,由罗尔定理,ξ1(0,1),F(ξ1)=0\exist \, \xi_1 \in (0, 1), F'(\xi_1) = 0
    又有 F(0)=F(ξ1)=0F'(0) = F'(\xi_1) = 0,同理可得 ξ2(0,ξ1),F(ξ2)=0\exist \, \xi_2 \in (0, \xi_1), F'(\xi_2) = 0
    同理,最终可知 ξ(0,ξn1)(0,1),F(n)(ξ)=0\exist \, \xi \in (0, \xi_{n - 1}) \sub (0, 1), F^{(n)}(\xi) = 0

  5. f(x)f(x)[a,b][a, b] 上连续,在 (a,b)(a, b) 内可导,且 f(a)=f(b)=0f(a) = f(b) = 0,证明:对任意的 kRk \in \R,存在 θ(a,b)\theta \in (a, b),使得 f(θ)=kf(θ)f'(\theta) = k f(\theta)

    证明:令 F(x)=f(x)ekxF(x) = \dfrac {f(x)} {e^{kx}},则 F(x)=f(x)kf(x)ekxF'(x) = \dfrac {f'(x) - kf(x)} {e^{kx}}
    显然有 F(a)=F(b)=0F(a) = F(b) = 0,则由罗尔定理,θ(a,b)\exist \, \theta \in (a, b),使得 F(θ)=0F'(\theta) = 0,即 f(θ)=kf(θ)f'(\theta) = kf(\theta)

  6. f(x)f(x) 在不含零点的区间 [a,b][a, b] 上连续,在 (a,b)(a, b) 内可导,证明存在 ξ(a,b)\xi \in (a, b),使得:

    2ξ(f(b)f(a))=(b2a2)f(ξ).2 \xi (f(b) - f(a)) = (b^2 - a^2) f'(\xi).

    证明:令 g(x)=x2g(x) = x^2,则上式化为:

    f(b)f(a)g(b)g(a)=f(ξ)g(ξ) \frac {f(b) - f(a)} {g(b) - g(a)} = \frac {f'(\xi)} {g'(\xi)}

    由柯西中值定理可知上式成立。

  7. 设非线性函数在 [a,b][a, b] 内连续,在 (a,b)(a, b) 内可导,则在 (a,b)(a, b) 上至少存在一点 η\eta,使得 f(η)>f(b)f(a)ba|f'(\eta)| > \left| \dfrac {f(b) - f(a)} {b - a} \right|

    证明:不妨设 f(b)f(a)ba>0\dfrac {f(b) - f(a)} {b - a} > 0。令 F(x)=f(x)f(b)f(a)baxF(x) = f(x) - \dfrac {f(b) - f(a)} {b - a} x。显然有 F(a)=F(b)F(a) = F(b)
    若对任意 η(a,b)\eta \in (a, b),都有 f(η)f(b)f(a)ba|f'(\eta)| \le \left| \dfrac {f(b) - f(a)} {b - a} \right|,则 F(x)=f(x)f(b)f(a)ba0F'(x) = f'(x) - \dfrac {f(b) - f(a)} {b - a} \le 0F(x)F(x)(a,b)(a, b) 上单调递减。
    又因为 F(a)=F(b)F(a) = F(b),所以 F(x)0F(x) \equiv 0,即 f(x)=f(b)f(a)baxf(x) = \dfrac {f(b) - f(a)} {b - a} x,与题设条件 “非线性函数” 矛盾,假设不成立。

  8. f(x)f(x) 在区间 (a,b)(a, b) 上可导,证明:对任意的 x0(a,b)x_0 \in (a, b),存在趋于 x0x_0 的两个 {xn},{yn}\{ x_n \}, \{ y_n \},其中 xn<x0<ynx_n < x_0 < y_n,使得 {f(xn)}\{ f'(x_n) \}{f(yn)}\{ f'(y_n) \} 都趋于 f(x0)f'(x_0)

    证明:取 ξn=x01n,ηn=x0+1n\xi_n = x_0 - \dfrac 1 n, \eta_n = x_0 + \dfrac 1 n,显然 ξnx0,ηnx0\xi_n \to x_0, \eta_n \to x_0。由拉格朗日中值定理可知,xn(ξn,x0),f(xn)=f(ξn)f(x0)ξnx0,limnf(xn)=limnf(ξn)f(x0)ξnx0=f(x0)\exist \, x_n \in (\xi_n, x_0), f'(x_n) = \dfrac {f(\xi_n) - f(x_0)} {\xi_n - x_0}, \lim\limits_{n \to \infty} f'(x_n) = \lim\limits_{n \to \infty} \dfrac {f(\xi_n) - f(x_0)} {\xi_n - x_0} = f'(x_0),且显然有 xnx0x_n \to x_0
    同理可得 yn(x0,ηn),f(yn)f(x0)\exist \, y_n \in (x_0, \eta_n), f'(y_n) \to f'(x_0)
    两个误点:
    1. 不能直接由 xnx0x_n \to x_0 推出 f(xn)f(x0)f'(x_n) \to f'(x_0),因为导函数连续性未知;
    2. 不能直接构造 xn=x01nx_n = x_0 - \dfrac 1 n,这样得到的极限表达式其实是 f(x0)f'(x_0) 而不是 f(xn)f'(x_n),用一次拉格朗日就是为了构造导函数数列。

  9. 求数列极限 limnn2(arctananarctanan+1)\lim\limits_{n \to \infty} n^2 \left( \arctan \dfrac a n - \arctan \dfrac a {n + 1} \right),其中 a0a \not = 0 为常数。

    解:由拉格朗日中值定理可得,arctananarctanan+1=11+ξ2(anan+1),ξ(an,an+1)\arctan \dfrac a n - \arctan \dfrac a {n + 1} = \dfrac 1 {1 + \xi^2} \cdot \left( \dfrac a n - \dfrac a {n + 1} \right), \xi \in (\dfrac a n, \dfrac a {n + 1})
    limnn2(arctananarctanan+1)=limnn211+ξ2(anan+1)=limnan2n2+n=a\lim\limits_{n \to \infty} n^2 \left( \arctan \dfrac a n - \arctan \dfrac a {n + 1} \right) = \lim\limits_{n \to \infty} n^2 \cdot \dfrac 1 {1 + \xi^2} \left( \dfrac a n - \dfrac a {n + 1} \right) = \lim\limits_{n \to \infty} \dfrac {a n^2} {n^2 + n} = a

  10. 证明下列恒等式:

    2arctanx+arcsin2x1+x2=π,x[1,+)2 \arctan x + \arcsin \frac {2x} {1 + x^2} = \pi, x \in [1, + \infty)

    证明:令 f(x)=2arctanx+arcsin2x1+x2,x[1,+)f(x) = 2 \arctan x + \arcsin \dfrac {2x} {1 + x^2}, x \in [1, + \infty)。则:

    f(x)=21+x2+114x2(1+x2)22(1+x2)4x2(1+x2)20 f'(x) = \frac 2 {1 + x^2} + \frac 1 {\sqrt {1 - \dfrac {4x^2} {(1 + x^2)^2}}} \frac {2(1 + x^2) - 4x^2} {(1 + x^2)^2} \equiv 0

    f(x)f(1)=πf(x) \equiv f(1) = \pi,得证。

  11. 利用拉格朗日公式证明不等式:

    (1) sinxsinyxy,x,yR|\sin x - \sin y| \le |x - y|, x, y \in \R

    (2) βαcos2α<tanβtanα<βαcos2β\dfrac {\beta - \alpha} {\cos^2 \alpha} < \tan \beta - \tan \alpha < \dfrac {\beta - \alpha} {\cos^2 \beta},其中 0<α<β<π20 < \alpha < \beta < \dfrac \pi 2

    (1) 证明:不妨设 x<yx < ysinxsiny=cosξ(xy),ξ(x,y)\sin x - \sin y = \cos \xi \cdot (x - y), \xi \in (x, y)
    sinxsiny=cosξxyxy|\sin x - \sin y| = |\cos \xi| |x - y| \le |x - y|

    (2) 证明:tanβtanα=sec2ξ(βα),ξ(α,β)\tan \beta - \tan \alpha = \sec^2 \xi \cdot (\beta - \alpha), \xi \in (\alpha, \beta)
    由于 0<α<β<π20 < \alpha < \beta < \dfrac \pi 2,有 secα<secξ<secβ\sec \alpha < \sec \xi < \sec \beta,因此:

    βαsec2α<βαsec2ξ=tanβtanα<βαsec2β \frac {\beta - \alpha} {\sec^2 \alpha} < \frac {\beta - \alpha} {\sec^2 \xi} = \tan \beta - \tan \alpha < \frac {\beta - \alpha} {\sec^2 \beta}

  12. x2>x1>0x_2 > x_1 > 0,证明:存在 ξ(x1,x2)\xi \in (x_1, x_2),满足:

    x1ex2x2ex1=(1ξ)eξ(x1x2)x_1 e^{x_2} - x_2 e^{x_1} = (1 - \xi) e^{\xi} (x_1 - x_2)

    证明:原式等价于

    ex2x2ex1x11x21x1=(1ξ)eξ \frac {\dfrac {e^{x_2}} {x_2} - \dfrac {e^{x_1}} {x_1}} {\dfrac 1 {x_2} - \dfrac 1 {x_1}} = (1 - \xi) e^\xi

    f(x)=exx,g(x)=1xf(x) = \dfrac {e^x} x, g(x) = \dfrac 1 x,则 f(x)=(x1)exx2,g(x)=1x2f'(x) = \dfrac {(x - 1) e^x} {x^2}, g'(x) = - \dfrac 1 {x^2},于是:

    f(x2)f(x1)x2x1=f(ξ)g(ξ),ξ(x1,x2) \frac {f(x_2) - f(x_1)} {x_2 - x_1} = \frac {f'(\xi)} {g'(\xi)}, \xi \in (x_1, x_2)

    由于 f(x),g(x)f(x), g(x)(0,+)(0, + \infty) 上均连续且可导,由柯西中值定理可知上式成立。