# 隐函数的导数

定义 11 若方程 F(x,y)=0F(x, y) = 0xI\forall x \in I,总存在唯一的 yy 使得方程成立,则称该方程确定了一个隐函数。

隐函数求导法则: 用复合函数求导法则直接对方程两边求导。

11. 求由方程 xyex+ey=0xy - e^x + e^y = 0 所确定的隐函数 y=y(x)y = y(x) 的导数 dydx,dydxx=0\dfrac {\mathrm {d} y} {\mathrm {d} x}, \left . \dfrac {\mathrm {d} y} {\mathrm {d} x} \right |_{x = 0}

解: 方程两边对 xx 求导,

y+xdydxex+eydydx=0y + x \frac {\mathrm {d} y} {\mathrm {d} x} - e^x + e^y \frac {\mathrm {d} y} {\mathrm {d} x} = 0

解得

dydx=exyx+ey\frac {\mathrm {d} y} {\mathrm {d} x} = \frac {e^x - y} {x + e^y}

由原方程知 x=0,y=0x = 0, y = 0,因此

dydxx=0=1\left . \frac {\mathrm {d} y} {\mathrm {d} x} \right |_{x = 0} = 1

# 由参数方程所确定的函数的导数

定义 22 若参数方程 {x=φ(t)y=ψ(t)\begin {cases} x = \varphi (t) \\ y = \psi (t) \end {cases} 确定 yyxx 间的函数关系,称此为由参数方程所确定的函数。

在方程

{x=φ(t)y=ψ(t)\begin {cases} x = \varphi (t) \\ y = \psi (t) \end {cases}

中,设函数 x=φ(t)x = \varphi (t) 具有单调连续的反函数 t=φ1(x)t = \varphi^{-1} (x),于是

y=ψ[φ1(x)]y = \psi [\varphi^{-1} (x)]

再设函数 x=φ(t),y=ψ(t)x = \varphi (t), y = \psi (t) 都可导,且 φ(t)0\varphi (t) \not = 0,由复合函数及反函数的求导法则得:

dydx=dydtdtdx=dydt1dxdt=ψ(t)φ(t)\frac {\mathrm {d} y} {\mathrm {d} x} = \frac {\mathrm {d} y} {\mathrm {d} t} \cdot \frac {\mathrm {d} t} {\mathrm {d} x} = \frac {\mathrm {d} y} {\mathrm {d} t} \cdot \frac 1 {\frac {\mathrm {d} x} {\mathrm {d} t}} = \frac {\psi' (t)} {\varphi' (t)}

# 习题

  1. 求下列方程所决定的隐函数 y=y(x)y = y(x) 的导数:

    (1) x2+y2=earctanyx\sqrt {x^2 + y^2} = e^{\arctan \frac y x}

    (2) x23+y23=a23(a>0)x^{\frac 2 3} + y^{\frac 2 3} = a^{\frac 2 3} (a > 0)

    (1) 解:两边同时对 xx 求导得:

    2x+2ydydx2x2+y2=earctanyxdydxxyx21+(yx)2 \frac {2x + 2y \dfrac {\mathrm {d} y} {\mathrm {d} x}} {2 \sqrt {x^2 + y^2}} = e^{\arctan \frac y x} \frac {\frac {\frac {\mathrm {d} y} {\mathrm {d} x}x - y} {x^2}} {1 + (\frac y x)^2}

    进一步整理得:

    dydx=xx2+y2+yearctanyxxearctanyxyx2+y2 \frac {\mathrm {d} y} {\mathrm {d} x} = \frac {x \sqrt {x^2 + y^2} + ye^{\arctan \frac y x}} {xe^{\arctan \frac y x} - y \sqrt {x^2 + y^2}}

    (2) 解:两边同时对 xx 求导得:

    23x13+23y13dydx=0 \frac 2 3 x^{- \frac 1 3} + \frac 2 3 y^{- \frac 1 3} \frac {\mathrm {d} y} {\mathrm {d} x} = 0

    进一步整理得:

    dydx=yx3 \frac {\mathrm {d} y} {\mathrm {d} x} = - \sqrt [3] {\dfrac y x}

  2. 求由下列参数方程所表示的函数 y=y(x)y = y(x) 的导数:

    {x=acos3ty=asin3t\begin {cases} x = a \cos^3 t \\ y = a \sin^3 t \end {cases}

    解:

    dydt=3asin2costdxdt=3acos2sint \frac {\mathrm {d} y} {\mathrm {d} t} = 3a \sin^2 \cos t \\ \frac {\mathrm {d} x} {\mathrm {d} t} = -3a \cos^2 \sin t

    由此得出

    dydx=tant \frac {\mathrm {d} y} {\mathrm {d} x} = - \tan t

  3. 求曲线 xy+ey=1xy + e^y = 1 在点 M(1,0)M(1, 0) 的切线和法线方程。

    解:对隐函数求导:

    y+xdydx+eydydx=0 y + x \frac {\mathrm d y} {\mathrm d x} + e^y \frac {\mathrm d y} {\mathrm d x} = 0

    整理得:

    dydx=yx+ey \frac {\mathrm d y} {\mathrm d x} = - \frac y {x + e^y}

    因此切线方程为 y=0y = 0,法线方程为 x=1x = 1

  4. 若曲线有极坐标方程 r=f(θ)r = f(\theta) 表示,则可得参数方程 x=f(θ)cosθ,y=f(θ)sinθx = f(\theta) \cos \theta, y = f(\theta) \sin \theta,求 y(x)y'(x)

    解:

    dydθ=f(θ)sinθ+f(θ)cosθdxdθ=f(θ)cosθf(θ)sinθy(x)=dydx=f(θ)sinθ+f(θ)cosθf(θ)cosθf(θ)sinθ \frac {\mathrm d y} {\mathrm d \theta} = f'(\theta) \sin \theta + f(\theta) \cos \theta \\ \frac {\mathrm d x} {\mathrm d \theta} = f'(\theta) \cos \theta - f(\theta) \sin \theta \\ y'(x) = \frac {\mathrm d y} {\mathrm d x} = \frac {f'(\theta) \sin \theta + f(\theta) \cos \theta} {f'(\theta) \cos \theta - f(\theta) \sin \theta}