# 洛必达法则 1(00\frac 0 0 型)

定理 11:设 f,gf, g 在区间 (x0,x0+δ)(x_0, x_0 + \delta) 有定义,g(x)0g(x) \not = 0,满足:

  1. limxx0+f(x)=0,limxx0+g(x)=0\lim\limits_{x \to x_0^+} f(x) = 0, \lim\limits_{x \to x_0^+} g(x) = 0

  2. f,gf, g 在区间 (x0,x0+δ)(x_0, x_0 + \delta) 可导,且 g(x)0g'(x) \not = 0

  3. limxx0+f(x)g(x)=a\lim\limits_{x \to x_0^+} \dfrac {f'(x)} {g'(x)} = aaa 为有限或无穷大)。

则有 limxx0+f(x)g(x)=limxx0+f(x)g(x)=a\lim\limits_{x \to x_0^+} \dfrac {f(x)} {g(x)} = \lim\limits_{x \to x_0^+} \dfrac {f'(x)} {g'(x)} = a

证明:补充定义:

F(x)={f(x),x(x0,x0+δ)0,x=x0,G(x)={g(x),x(x0,x0+δ)0,x=x0F(x) = \begin {cases} f(x), & x \in (x_0, x_0 + \delta) \\ 0, & x = x_0 \end {cases}, G(x) = \begin {cases} g(x), & x \in (x_0, x_0 + \delta) \\ 0, & x = x_0 \end {cases}

则对 x(x0,x0+δ)\forall \, x \in (x_0, x_0 + \delta)F,GF, G[x0,x][x_0, x] 连续,在 (x0,x)(x_0, x) 内可导。

由柯西中值定理:ξ(x0,x)\exist \, \xi \in (x_0, x),使得:

f(x)g(x)=F(x)G(x)=F(x)F(x0)G(x)G(x0)=F(ξ)G(ξ)=f(ξ)g(ξ)\frac {f(x)} {g(x)} = \frac {F(x)} {G(x)} = \frac {F(x) - F(x_0)} {G(x) - G(x_0)} = \frac {F'(\xi)} {G'(\xi)} = \frac {f'(\xi)} {g'(\xi)}

而当 xx0+x \to x_0^+ 时,ξx0+\xi \to x_0^+,因此:

limxx0+f(x)g(x)=limξx0+f(ξ)g(ξ)=limxx0+f(x)g(x)=a\lim_{x \to x_0^+} \frac {f(x)} {g(x)} = \lim_{\xi \to x_0^+} \frac {f'(\xi)} {g'(\xi)} = \lim_{x \to x_0^+} \frac {f'(x)} {g'(x)} = a

说明:对 xx0,xx0,x,x±x \to x_0^-, x \to x_0, x \to \infty, x \to \pm \infty 也成立。

定理 22:设 f,gf, g(a,+)(a, + \infty) 内有定义,g(x)0g(x) \not = 0,且 limx+f(x)=0,limx+g(x)=0,g(x)0\lim\limits_{x \to + \infty} f(x) = 0, \lim\limits_{x \to + \infty} g(x) = 0, g'(x) \not = 0,若 limx+f(x)g(x)=A\lim\limits_{x \to + \infty} \dfrac {f'(x)} {g'(x)} = AAA 可为有限或无穷),则 limx+f(x)g(x)=A\lim\limits_{x \to + \infty} \dfrac {f(x)} {g(x)} = A

证明:令 t=1xt = \dfrac 1 x,并利用 定理 11 即可。

limx+f(x)g(x)=limt0+f(1t)g(1t)=limt0+f(1t)(1t2)g(1t)(1t2)=limt0+f(1t)g(1t)=limx+f(x)g(x)\lim_{x \to + \infty} \frac {f(x)} {g(x)} = \lim_{t \to 0^+} \frac {f(\frac 1 t)} {g(\frac 1 t)} = \lim_{t \to 0^+} \frac {f'(\frac 1 t)(- \frac 1 {t^2})} {g'(\frac 1 t)(- \frac 1 {t^2})} = \lim_{t \to 0^+} \frac {f'(\frac 1 t)} {g'(\frac 1 t)} = \lim_{x \to +\infty} \frac {f'(x)} {g'(x)}

# 洛必达法则 2(\frac {\infty} {\infty} 型)

定理 33:设 f,gf, g 在内满足:

  1. limxx0+g(x)=\lim\limits_{x \to x_0^+} g(x) = \infty

  2. f,gf, g 在区间 (x0,x0+δ)(x_0, x_0 + \delta) 可导,且 g(x)0g'(x) \not = 0

  3. limxx0+f(x)g(x)=l\lim\limits_{x \to x_0^+} \dfrac {f'(x)} {g'(x)} = lll 为有限或无穷大)。

则有 limxx0+f(x)g(x)=limxx0+f(x)g(x)=l\lim\limits_{x \to x_0^+} \dfrac {f(x)} {g(x)} = \lim\limits_{x \to x_0^+} \dfrac {f'(x)} {g'(x)} = l

说明

  1. 并没要求 limxx0+f(x)=\lim\limits_{x \to x_0^+} f(x) = \infty

  2. 可推广到 xx0,xx0,x±,xx \to x_0^-, x \to x_0, x \to \pm \infty, x \to \infty

注意

  1. 可多次应用洛必达法则来求极限,每次 应用前都要验证条件

  2. 各种方法综合使用(提出常用因子,等价代换,变量替换)可以简化运算。

  3. 注意条件 limxx0+f(x)g(x)\lim\limits_{x \to x_0^+} \dfrac {f'(x)} {g'(x)} 要存在或为无穷大!(否则要用其他方法)例如:

    limx+x+sinxx=limx1+cosx1\lim\limits_{x \to + \infty} \dfrac {x + \sin x} {x} = \lim\limits_{x \to \infty} \dfrac {1 + \cos x} {1} 不存在,不能洛必达!事实上,limxx+sinxx=limx(1+sinxx)=1\lim\limits_{x \to \infty} \dfrac {x + \sin x} {x} = \lim\limits_{x \to \infty} (1 + \dfrac {\sin x} {x}) = 1

1.1. 求下列极限:

limx0+xsinxxx\lim\limits_{x \to 0^+} \dfrac {\sqrt x - \sin \sqrt x} {x \sqrt x}

:令 y=xy = \sqrt x,则有:

limx0+xsinxxx=limy0+ysinyy3=limy0+1cosy3y2=16\lim\limits_{x \to 0^+} \dfrac {\sqrt x - \sin \sqrt x} {x \sqrt x} = \lim_{y \to 0^+} \frac {y - \sin y} {y^3} = \lim_{y \to 0^+} \frac {1 - \cos y} {3y^2} = \frac 1 6

# 其他不定型

关键:将其他类型未定式化为洛必达法则可解决的类型。

# 00 \cdot \infty

步骤010 \cdot \infty \Rightarrow \dfrac 1 \infty \cdot \infty,或 00100 \cdot \infty \Rightarrow 0 \cdot \dfrac 1 0

# \infty - \infty

步骤10100000\infty - \infty \Rightarrow \dfrac 1 0 - \dfrac 1 0 \Rightarrow \dfrac {0 - 0} {0 \cdot 0}

# 00,1,00^0, 1^\infty, \infty^0

步骤

0010}取对数{0ln0ln10ln0\begin {rcases} 0^0 \\ 1^\infty \\ \infty^0 \end {rcases} \xrightarrow {取对数} \begin {cases} 0 \cdot \ln 0 \\ \infty \cdot \ln 1 \\ 0 \cdot \ln \infty \end {cases} \Rightarrow 0 \cdot \infty

# 习题

  1. 计算下列极限:

    (1) limx0xsinxx3\lim\limits_{x \to 0} \dfrac {x - \sin x} {x^3}

    (2) limx0xx22ln(1+x)x3\lim\limits_{x \to 0} \dfrac {x - \dfrac {x^2} 2 - \ln (1 + x)} {x^3}

    (3) limx1ln[cos(x1)]1sinπx2\lim\limits_{x \to 1} \dfrac {\ln [\cos (x - 1)]} {1 - \sin \dfrac {\pi x} 2}

    (4) limx0ex1+2xln(1+x2)\lim\limits_{x \to 0} \dfrac {e^x - \sqrt {1 + 2x}} {\ln (1 + x^2)}

    (5) limx0x2e1x2\lim\limits_{x \to 0} x^2 e^{\frac 1 {x^2}}

    (6) limx0(1sinx1x)\lim\limits_{x \to 0} \left( \dfrac 1 {\sin x} - \dfrac 1 x \right)

    (7) limx0(1x1ex1)\lim\limits_{x \to 0} \left( \dfrac 1 x - \dfrac 1 {e^x - 1} \right)

    (8) limx0(tanxx)1x2\lim\limits_{x \to 0} \left( \dfrac {\tan x} x \right)^{\frac 1 {x^2}}

    (9) limx0(ln1x)x\lim\limits_{x \to 0} \left( \ln \dfrac 1 x \right)^x

    (10) limx0(tanx)sinx\lim\limits_{x \to 0} (\tan x)^{\sin x}

    (11) limx(tanπx2x+1)1x\lim\limits_{x \to \infty} \left( \tan \dfrac {\pi x} {2x + 1} \right)^{\frac 1 x}

    (1) 解:

    limx0xsinxx3=limx01cosx3x2=limx012x23x2=16 \lim\limits_{x \to 0} \dfrac {x - \sin x} {x^3} = \lim_{x \to 0} \frac {1 - \cos x} {3x^2} = \lim_{x \to 0} \frac {\frac 1 2 x^2} {3 x^2} = \frac 1 6

    (2) 解:

    limx0xx22ln(1+x)x3=limx01x11+x3x2=limx01+1(1+x)26x=limx0x+26(1+x)2=13 \lim\limits_{x \to 0} \dfrac {x - \dfrac {x^2} 2 - \ln (1 + x)} {x^3} = \lim_{x \to 0} \dfrac {1 - x - \dfrac 1 {1 + x}} {3x^2} = \lim_{x \to 0} \frac {-1 + \dfrac 1 {(1 + x)^2}} {6x} = - \lim_{x \to 0} \frac {x + 2} {6(1 + x)^2} = - \frac 1 3

    (3) 解:

    limx1ln[cos(x1)]1sinπx2=limx1cos(x1)11sinπx2=limx1sin(x1)π2cosπx2=limx1x1π2cosπx2=limx11π24sinπx2=4π2 \lim\limits_{x \to 1} \dfrac {\ln [\cos (x - 1)]} {1 - \sin \dfrac {\pi x} 2} = \lim_{x \to 1} \frac {\cos (x - 1) - 1} {1 - \sin \dfrac {\pi x} 2} = \lim_{x \to 1} \frac {- \sin (x - 1)} {- \dfrac \pi 2 \cos \dfrac {\pi x} 2} = \lim_{x \to 1} \frac {x - 1} {\dfrac \pi 2 \cos \dfrac {\pi x} 2} = \lim_{x \to 1} \frac {1} {- \dfrac {\pi^2} 4 \sin \dfrac {\pi x} 2} = - \frac 4 {\pi^2}

    (4) 解:

    limx0ex1+2xln(1+x2)=limx0ex1+2xx2 \lim_{x \to 0} \frac {e^x - \sqrt {1 + 2x}} {\ln (1 + x^2)} = \lim_{x \to 0} \frac {e^x - \sqrt {1 + 2x}} {x^2}

    t=1+2x1t = \sqrt {1 + 2x} \to 1,则 x=t212x = \dfrac {t^2 - 1} 2,代入得:

    limx0ex1+2xx2=limt1et212t(t21)24=limt1tet2121(t21)t=limt1(1+t2)et2123t21=1 \lim_{x \to 0} \frac {e^x - \sqrt {1 + 2x}} {x^2} = \lim_{t \to 1} \frac {e^{\frac {t^2 - 1} 2} - t} {\frac {(t^2 - 1)^2} 4} = \lim_{t \to 1} \frac {t e^{\frac {t^2 - 1} 2} - 1} {(t^2 - 1)t} = \lim_{t \to 1} \frac {(1 + t^2) e^{\frac {t^2 - 1} 2}} {3t^2 - 1} = 1

    (5) 解:

    limx0x2e1x2=limx0e1x21x2=limx0e1x2(2x3)2x3=limx0e1x2=+ \lim_{x \to 0} x^2 e^{\frac 1 {x^2}} = \lim_{x \to 0} \frac {e^{\frac 1 {x^2}}} {\frac 1 {x^2}} = \lim_{x \to 0} \frac {e^{\frac 1 {x^2}} (- \frac 2 {x^3})} {- \frac 2 {x^3}} = \lim_{x \to 0} e^{\frac 1 {x^2}} = + \infty

    (6) 解:

    limx0(1sinx1x)=limx0xsinxx2=limx01cosx2x=limx012x22x=limx0x4=0 \lim_{x \to 0} \left( \frac 1 {\sin x} - \frac 1 x \right) = \lim_{x \to 0} \frac {x - \sin x} {x^2} = \lim_{x \to 0} \frac {1 - \cos x} {2x} = \lim_{x \to 0} \frac {\frac 1 2 x^2} {2x} = \lim_{x \to 0} \frac x 4 = 0

    (7) 解:

    limx0(1x1ex1)=limx0ex1xx(ex1)=limx0ex1xx2=limx0ex12x=limx0x2x=12 \lim_{x \to 0} \left( \frac 1 x - \frac 1 {e^x - 1} \right) = \lim_{x \to 0} \frac {e^x - 1 - x} {x (e^x - 1)} = \lim_{x \to 0} \frac {e^x - 1 - x} {x^2} = \lim_{x \to 0} \frac {e^x - 1} {2x} = \lim_{x \to 0} \frac {x} {2x} = \frac 1 2

    (8) 解:

    limx0tanxx1x2=limx0tanxxx3=limx0sec2x13x2=limx0tan2x3x2=13limx0(tanxx)1x2=limx0etanxx1x2=e13 \lim_{x \to 0} \frac {\dfrac {\tan x} x - 1} {x^2} = \lim_{x \to 0} \frac {\tan x - x} {x^3} = \lim_{x \to 0} \frac {\sec^2 x - 1} {3x^2} = \lim_{x \to 0} \frac {\tan^2 x} {3x^2} = \frac 1 3 \\ \lim_{x \to 0} \left( \frac {\tan x} x \right)^{\frac 1 {x^2}} = \lim_{x \to 0} e^{\frac {\frac {\tan x} x - 1} {x^2}} = e^{\frac 1 3}

    (9) 解:

    limx0xln(lnx)=limx0ln(ln1x)1x=limx01ln1xx(1x2)(1x2)=limx0xln1x=0limx0(ln1x)x=limx0exln(lnx)=1 \lim_{x \to 0} x \ln (\ln x) = \lim_{x \to 0} \frac {\ln \left( \ln \dfrac 1 x \right)} {\dfrac 1 x} = \lim_{x \to 0} \frac {\dfrac 1 {\ln \frac 1 x} x \left( - \dfrac 1 {x^2} \right)} {\left( - \dfrac 1 {x^2} \right)} = \lim_{x \to 0} \frac x {\ln \dfrac 1 x} = 0 \\ \lim_{x \to 0} \left( \ln \frac 1 x \right)^x = \lim_{x \to 0} e^{x \ln (\ln x)} = 1

    (10) 解:

    limx0sinxln(tanx)=limx0ln(tanx)1sinx=limx0sec2xtanxcscxcotx=limx0sec2xcscx=limx0sinxcos2x=0limx0(tanx)sinx=limx0esinxln(tanx)=1 \lim_{x \to 0} \sin x \ln (\tan x) = \lim_{x \to 0} \frac {\ln (\tan x)} {\dfrac 1 {\sin x}} = \lim_{x \to 0} \frac {\dfrac {\sec^2 x} {\tan x}} {- \csc x \cot x} = \lim_{x \to 0} - \frac {\sec^2 x} {\csc x} = - \lim_{x \to 0} \frac {\sin x} {\cos^2 x} = 0 \\ \lim_{x \to 0} (\tan x)^{\sin x} = \lim_{x \to 0} e^{\sin x \ln (\tan x)} = 1

    (11) 解:令 t=πx2x+1π2t = \dfrac {\pi x} {2x + 1} \to \dfrac \pi 2,则:

    limxlntanπx2x+1x=limtπ2lntanttπ2t=limtπ2sec2ttantπ(π2t)2=limtπ2(π2t)2πsintcost=limtπ2(π2t)2πcost=limtpi24(π2t)πsint=0limx(tanπx2x+1)1x=limxelntanπx2x+1x=1 \lim_{x \to \infty} \frac {\ln \tan \dfrac {\pi x} {2x + 1}} {x} = \lim_{t \to \frac \pi 2} \frac {\ln \tan t} {\dfrac t {\pi - 2t}} = \lim_{t \to \frac \pi 2} \frac {\dfrac {\sec^2 t} {\tan t}} {\dfrac \pi {(\pi - 2t)^2}} = \lim_{t \to \frac \pi 2} \frac {(\pi - 2t)^2} {\pi \sin t \cos t} = \lim_{t \to \frac \pi 2} \frac {(\pi - 2t)^2} {\pi \cos t} = \lim_{t \to \frac pi 2} \frac {4(\pi - 2t)} {\pi \sin t} = 0 \\ \lim_{x \to \infty} \left( \tan \frac {\pi x} {2x + 1} \right)^{\frac 1 x} = \lim_{x \to \infty} e^{\frac {\ln \tan \frac {\pi x} {2x + 1}} {x}} = 1

  2. 已知 f(x)={g(x)x,x00,x=0f(x) = \begin {cases} \dfrac {g(x)} x, & x \not = 0 \\ 0, & x = 0 \end {cases},其中 g(0)=0,g(0)=0,g(0)=Ag(0) = 0, g'(0) = 0, g''(0) = A,求 f(0)f'(0)

    解:

    f(0)=limx0g(x)xx=limx0g(x)x2=limx0g(x)2x=limx0g(x)2=A2 \begin {aligned} f'(0) &= \lim_{x \to 0} \frac {\dfrac {g(x)} x} {x} = \lim_{x \to 0} \frac {g(x)} {x^2} = \lim_{x \to 0} \frac {g'(x)} {2x} = \lim_{x \to 0} \frac {g''(x)} 2 = \frac A 2 \end {aligned}

  3. f(x)f(x) 在点 xx 处有二阶导数,求证:f(x)=limh0f(x+h)+f(xh)2f(x)h2f''(x) = \lim\limits_{h \to 0} \dfrac {f(x + h) + f(x - h) - 2 f(x)} {h^2}。由此推出结论:若 f(x)f(x) 是二阶可导的凸函数,必有 f(x)0f''(x) \ge 0

    证明:

    limh0f(x+h)+f(xh)2f(x)h2=limh0f(x+h)f(x)hf(x)f(xh)hh=limh0f(x)f(xh)h=f(xh)=f(x) \lim_{h \to 0} \frac {f(x + h) + f(x - h) - 2 f(x)} {h^2} = \lim_{h \to 0} \frac {\dfrac {f(x + h) - f(x)} {h} - \dfrac {f(x) - f(x - h)} {h}} {h} = \lim_{h \to 0} \frac {f'(x) - f'(x - h)} {h} = f''(x - h) = f''(x)

    由于 f(x)f(x) 是二阶可导的凸函数,由凸函数性质可知,f(x+h)+f(xh)2f(x)f(x + h) + f(x - h) \ge 2 f(x),从而证得 f(x)0f''(x) \ge 0

  4. x1=1,xn+1=ln(1+xn),n=1,2,x_1 = 1, x_{n + 1} = \ln (1 + x_n), n = 1, 2, \cdots,求极限 limnnxn\lim\limits_{n \to \infty} n x_n

    解:已知 1x1>01 \ge x_1 > 0,假设 1xn>01 \ge x_n > 0,则:

    xn+1xn=ln(1+xn)xn<0 x_{n + 1} - x_n = \ln (1 + x_n) - x_n < 0

    即数列 {xn}\{ x_n \} 单调递减。又由于当 xn>0x_n > 0 时,xn+1=ln(1+xn)>0x_{n + 1} = \ln (1 + x_n) > 0,因此 00 是数列 {xn}\{ x_n \} 的一个下界,因此数列 {xn}\{ x_n \} 收敛,设 limnxn=A\lim\limits_{n \to \infty} x_n = A,对递推式两边取极限:

    A=ln(1+A) A = \ln (1 + A)

    解得 A=0A = 0。由斯图尔兹定理:

    limnnan=limnn1an=limn11an+11an=limnanan+1anan+1=limnanln(1+an)anln(1+an) \lim_{n \to \infty} n a_n = \lim_{n \to \infty} \frac n {\frac 1 {a_n}} = \lim_{n \to \infty} \frac 1 {\frac 1 {a_{n + 1}} - \frac 1 {a_n}} = \lim_{n \to \infty} \frac {a_n a_{n + 1}} {a_n - a_{n + 1}} = \lim_{n \to \infty} \frac {a_n \ln (1 + a_n)} {a_n - \ln (1 + a_n)}

    设函数 f(x)=xln(1+x)xln(1+x)f(x) = \dfrac {x - \ln (1 + x)} {x \ln (1 + x)},由洛必达法则:

    limx0xln(1+x)xln(1+x)=limx0111+xln(1+x)+x1+x=limx0x(1+x)ln(1+x)+x=limx012+ln(1+x)=12 \lim_{x \to 0} \frac {x - \ln (1 + x)} {x \ln (1 + x)} = \lim_{x \to 0} \frac {1 - \dfrac 1 {1 + x}} {\ln (1 + x) + \dfrac x {1 + x}} = \lim_{x \to 0} \frac x {(1 + x) \ln (1 + x) + x} = \lim_{x \to 0} \frac {1} {2 + \ln (1 + x)} = \frac 1 2

    由海涅定理可知,limnanln(1+an)anln(1+an)=2\lim\limits_{n \to \infty} \dfrac {a_n \ln (1 + a_n)} {a_n - \ln (1 + a_n)} = 2,即 limnnxn=2\lim\limits_{n \to \infty} n x_n = 2
    没想到利用海涅定理将数列极限转化为函数极限再用洛必达求出函数极限